双光子聚合激光直写三维聚合物微结构功能化激光熔融沉积制备钛基表面提高生物活性。

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-09-27 DOI:10.3390/polym17192620
Bogdan Stefanita Calin, Roxana Cristina Popescu, Roxana Gabriela Ghita, Eugenia Tanasa, Sabin Mihai, Irina Alexandra Paun
{"title":"双光子聚合激光直写三维聚合物微结构功能化激光熔融沉积制备钛基表面提高生物活性。","authors":"Bogdan Stefanita Calin, Roxana Cristina Popescu, Roxana Gabriela Ghita, Eugenia Tanasa, Sabin Mihai, Irina Alexandra Paun","doi":"10.3390/polym17192620","DOIUrl":null,"url":null,"abstract":"<p><p>Titanium (Ti)-based implants are widely used for bone injuries but suffer from poor bioactivity. To address this, we propose an innovative synergistic approach that combines laser melting deposition (LMD) for the fabrication of titanium-based supports with laser direct writing via two-photon polymerization (LDW via TPP) for their functionalization with 3D polymeric microstructures. We functionalized Ti surfaces fabricated by LMD using Ti (99.85 wt.%) and TiC powders (79.95 wt.% Ti, 20.05 wt.% C), with 3D microstructures obtained by LDW via TPP. The 3D microstructures were made of IP-Dip photopolymer and comprised 64 vertical microtubes arranged in five layers (10 to 170 μm tall, >94% porosity). When seeded with MG-63 osteoblast-like cells, the Ti-based surfaces functionalized with 3D polymeric microstructures promoted 3D cells' spatial organization. Moreover, the cells seeded on functionalized Ti-based surfaces showed earlier organic matrix synthesis (day 7 vs. day 14) and mineralization (higher deposits of calcium and phosphorus, starting from day 7), as compared with the cells from non-functionalized Ti. In addition, the traction forces exerted by the cells on the 3D microstructures, determined using FEBio Studio software, were of the order of hundreds of µN, whereas if the cells would have been seeded on extracellular matrix-like materials, the traction forces would have been of only few nN. These results point towards the major role played by 3D polymeric microarchitectures in the interaction between osteoblast-like cells and Ti-based surfaces. Overall, the functionalization of Ti-based constructs fabricated by LMD with 3D polymeric microstructures made by LDW via TPP significantly improved Ti bioactivity.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12527090/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improved Bioactivity of Titanium-Based Surfaces Fabricated by Laser Melting Deposition by Functionalization with 3D Polymeric Microstructures Produced by Laser Direct Writing via Two-Photon Polymerization.\",\"authors\":\"Bogdan Stefanita Calin, Roxana Cristina Popescu, Roxana Gabriela Ghita, Eugenia Tanasa, Sabin Mihai, Irina Alexandra Paun\",\"doi\":\"10.3390/polym17192620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Titanium (Ti)-based implants are widely used for bone injuries but suffer from poor bioactivity. To address this, we propose an innovative synergistic approach that combines laser melting deposition (LMD) for the fabrication of titanium-based supports with laser direct writing via two-photon polymerization (LDW via TPP) for their functionalization with 3D polymeric microstructures. We functionalized Ti surfaces fabricated by LMD using Ti (99.85 wt.%) and TiC powders (79.95 wt.% Ti, 20.05 wt.% C), with 3D microstructures obtained by LDW via TPP. The 3D microstructures were made of IP-Dip photopolymer and comprised 64 vertical microtubes arranged in five layers (10 to 170 μm tall, >94% porosity). When seeded with MG-63 osteoblast-like cells, the Ti-based surfaces functionalized with 3D polymeric microstructures promoted 3D cells' spatial organization. Moreover, the cells seeded on functionalized Ti-based surfaces showed earlier organic matrix synthesis (day 7 vs. day 14) and mineralization (higher deposits of calcium and phosphorus, starting from day 7), as compared with the cells from non-functionalized Ti. In addition, the traction forces exerted by the cells on the 3D microstructures, determined using FEBio Studio software, were of the order of hundreds of µN, whereas if the cells would have been seeded on extracellular matrix-like materials, the traction forces would have been of only few nN. These results point towards the major role played by 3D polymeric microarchitectures in the interaction between osteoblast-like cells and Ti-based surfaces. Overall, the functionalization of Ti-based constructs fabricated by LMD with 3D polymeric microstructures made by LDW via TPP significantly improved Ti bioactivity.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 19\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12527090/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17192620\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17192620","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

钛基植入物广泛用于骨损伤,但其生物活性较差。为了解决这个问题,我们提出了一种创新的协同方法,将激光熔化沉积(LMD)与双光子聚合(LDW via TPP)激光直接写入相结合,用于制造钛基支架,使其具有3D聚合物微结构的功能化。我们使用Ti (99.85 wt.%)和TiC粉末(79.95 wt.% Ti, 20.05 wt.% C)对LMD制备的Ti表面进行了功能化,并通过TPP通过LDW获得了三维微观结构。三维微观结构由IP-Dip光聚合物组成,由64个垂直微管组成,排列在5层(10 ~ 170 μm高,>94%孔隙率)。当植入MG-63成骨细胞样细胞时,具有3D聚合物微结构的钛基表面促进了3D细胞的空间组织。此外,与未功能化钛的细胞相比,在功能化钛表面上的细胞显示出更早的有机基质合成(第7天vs.第14天)和矿化(从第7天开始,钙和磷的沉积量更高)。此外,使用FEBio Studio软件确定的细胞对3D微结构施加的牵引力约为数百μ N,而如果将细胞植入细胞外基质样材料,牵引力仅为几个nN。这些结果指出了3D聚合物微结构在成骨细胞样细胞和钛基表面之间相互作用中的主要作用。综上所述,LMD制备的Ti基结构体通过TPP与LDW制备的3D聚合物微结构功能化,显著提高了Ti的生物活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Bioactivity of Titanium-Based Surfaces Fabricated by Laser Melting Deposition by Functionalization with 3D Polymeric Microstructures Produced by Laser Direct Writing via Two-Photon Polymerization.

Titanium (Ti)-based implants are widely used for bone injuries but suffer from poor bioactivity. To address this, we propose an innovative synergistic approach that combines laser melting deposition (LMD) for the fabrication of titanium-based supports with laser direct writing via two-photon polymerization (LDW via TPP) for their functionalization with 3D polymeric microstructures. We functionalized Ti surfaces fabricated by LMD using Ti (99.85 wt.%) and TiC powders (79.95 wt.% Ti, 20.05 wt.% C), with 3D microstructures obtained by LDW via TPP. The 3D microstructures were made of IP-Dip photopolymer and comprised 64 vertical microtubes arranged in five layers (10 to 170 μm tall, >94% porosity). When seeded with MG-63 osteoblast-like cells, the Ti-based surfaces functionalized with 3D polymeric microstructures promoted 3D cells' spatial organization. Moreover, the cells seeded on functionalized Ti-based surfaces showed earlier organic matrix synthesis (day 7 vs. day 14) and mineralization (higher deposits of calcium and phosphorus, starting from day 7), as compared with the cells from non-functionalized Ti. In addition, the traction forces exerted by the cells on the 3D microstructures, determined using FEBio Studio software, were of the order of hundreds of µN, whereas if the cells would have been seeded on extracellular matrix-like materials, the traction forces would have been of only few nN. These results point towards the major role played by 3D polymeric microarchitectures in the interaction between osteoblast-like cells and Ti-based surfaces. Overall, the functionalization of Ti-based constructs fabricated by LMD with 3D polymeric microstructures made by LDW via TPP significantly improved Ti bioactivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信