{"title":"通过材料优化提高薄壁塑料结构的屈曲性能。","authors":"Alexander Busch, Olaf Bruch, Dirk Reith","doi":"10.3390/polym17192697","DOIUrl":null,"url":null,"abstract":"<p><p>Reducing material usage in plastic products is a key lever for improving resource efficiency and minimizing environmental impact. In thin-walled structures subjected to mechanical loading, material efficiency must be achieved without compromising structural performance. In particular, resistance to buckling, a critical failure mode, must be taken into account during product development. Due to the large number of design and process variables, many of which are interdependent, optimization approaches are uncommon in the blow-molded packaging industry. This paper presents a sensitivity-based optimization approach to improve buckling resistance by modifying the product's material distribution. Since the sensitivity is nonlinear and depends on the product's deformation state, various methods are developed and tested to reduce the frame-wise sensitivity data to a single sensitivity vector suitable for optimization. These methods are then tested on common extrusion blow-molded products, achieving improvements in buckling load of up to 60%. This approach is transferable to other thin-walled structures across various engineering domains, offering a pathway toward lightweight yet load-compliant designs.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12526534/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Buckling Performance of Thin-Walled Plastic Structures Through Material Optimization.\",\"authors\":\"Alexander Busch, Olaf Bruch, Dirk Reith\",\"doi\":\"10.3390/polym17192697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reducing material usage in plastic products is a key lever for improving resource efficiency and minimizing environmental impact. In thin-walled structures subjected to mechanical loading, material efficiency must be achieved without compromising structural performance. In particular, resistance to buckling, a critical failure mode, must be taken into account during product development. Due to the large number of design and process variables, many of which are interdependent, optimization approaches are uncommon in the blow-molded packaging industry. This paper presents a sensitivity-based optimization approach to improve buckling resistance by modifying the product's material distribution. Since the sensitivity is nonlinear and depends on the product's deformation state, various methods are developed and tested to reduce the frame-wise sensitivity data to a single sensitivity vector suitable for optimization. These methods are then tested on common extrusion blow-molded products, achieving improvements in buckling load of up to 60%. This approach is transferable to other thin-walled structures across various engineering domains, offering a pathway toward lightweight yet load-compliant designs.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 19\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12526534/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17192697\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17192697","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Enhancing the Buckling Performance of Thin-Walled Plastic Structures Through Material Optimization.
Reducing material usage in plastic products is a key lever for improving resource efficiency and minimizing environmental impact. In thin-walled structures subjected to mechanical loading, material efficiency must be achieved without compromising structural performance. In particular, resistance to buckling, a critical failure mode, must be taken into account during product development. Due to the large number of design and process variables, many of which are interdependent, optimization approaches are uncommon in the blow-molded packaging industry. This paper presents a sensitivity-based optimization approach to improve buckling resistance by modifying the product's material distribution. Since the sensitivity is nonlinear and depends on the product's deformation state, various methods are developed and tested to reduce the frame-wise sensitivity data to a single sensitivity vector suitable for optimization. These methods are then tested on common extrusion blow-molded products, achieving improvements in buckling load of up to 60%. This approach is transferable to other thin-walled structures across various engineering domains, offering a pathway toward lightweight yet load-compliant designs.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.