{"title":"光敏水溶性超疏水涂料的研制及其改性纸的性能。","authors":"Shangjie Jiang, Yonghui Zuo","doi":"10.3390/polym17192615","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a highly stable light-responsive superhydrophobic paper was successfully fabricated. The process involved polymerizing the synthesized light-responsive monomer PAPAE with the hydrophilic monomer 2-hydroxyethyl methacrylate(HEMA), the fluorine-containing monomer hexafluorobutyl methacrylate(HFMA),and 3-trimethoxysilyl-propyl methacrylate(TSPM), followed by grafting (3-Aminopropyl) triethoxysilane (APTES)-modified SiO<sub>2</sub> nanoparticles onto the polymer to enhance surface roughness, and subsequently applying this composite to the paper surface. When the monomer ratio in the polymer was HFMA:TSPM:PAPAE:HEMA = 0.2:0.2:0.4:0.2, the resulting coating exhibited good water solubility, enabling the modified paper to achieve reversible wettability transitions under light irradiation. At a SiO<sub>2</sub>-to-polymer ratio of 0.3, the contact angle variation range reached its maximum (96-156.8°). The proposed method for fabricating superhydrophobic paper not only offers relative simplicity, low cost, and strong versatility but also imparts the paper with excellent weather resistance, abrasion resistance, and ultrasonic durability, highlighting its great potential for practical applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12527038/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of Photoresponsive Water-Soluble Superhydrophobic Coatings and Properties of the Modified Paper.\",\"authors\":\"Shangjie Jiang, Yonghui Zuo\",\"doi\":\"10.3390/polym17192615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a highly stable light-responsive superhydrophobic paper was successfully fabricated. The process involved polymerizing the synthesized light-responsive monomer PAPAE with the hydrophilic monomer 2-hydroxyethyl methacrylate(HEMA), the fluorine-containing monomer hexafluorobutyl methacrylate(HFMA),and 3-trimethoxysilyl-propyl methacrylate(TSPM), followed by grafting (3-Aminopropyl) triethoxysilane (APTES)-modified SiO<sub>2</sub> nanoparticles onto the polymer to enhance surface roughness, and subsequently applying this composite to the paper surface. When the monomer ratio in the polymer was HFMA:TSPM:PAPAE:HEMA = 0.2:0.2:0.4:0.2, the resulting coating exhibited good water solubility, enabling the modified paper to achieve reversible wettability transitions under light irradiation. At a SiO<sub>2</sub>-to-polymer ratio of 0.3, the contact angle variation range reached its maximum (96-156.8°). The proposed method for fabricating superhydrophobic paper not only offers relative simplicity, low cost, and strong versatility but also imparts the paper with excellent weather resistance, abrasion resistance, and ultrasonic durability, highlighting its great potential for practical applications.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 19\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12527038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17192615\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17192615","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Development of Photoresponsive Water-Soluble Superhydrophobic Coatings and Properties of the Modified Paper.
In this study, a highly stable light-responsive superhydrophobic paper was successfully fabricated. The process involved polymerizing the synthesized light-responsive monomer PAPAE with the hydrophilic monomer 2-hydroxyethyl methacrylate(HEMA), the fluorine-containing monomer hexafluorobutyl methacrylate(HFMA),and 3-trimethoxysilyl-propyl methacrylate(TSPM), followed by grafting (3-Aminopropyl) triethoxysilane (APTES)-modified SiO2 nanoparticles onto the polymer to enhance surface roughness, and subsequently applying this composite to the paper surface. When the monomer ratio in the polymer was HFMA:TSPM:PAPAE:HEMA = 0.2:0.2:0.4:0.2, the resulting coating exhibited good water solubility, enabling the modified paper to achieve reversible wettability transitions under light irradiation. At a SiO2-to-polymer ratio of 0.3, the contact angle variation range reached its maximum (96-156.8°). The proposed method for fabricating superhydrophobic paper not only offers relative simplicity, low cost, and strong versatility but also imparts the paper with excellent weather resistance, abrasion resistance, and ultrasonic durability, highlighting its great potential for practical applications.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.