光敏水溶性超疏水涂料的研制及其改性纸的性能。

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-09-27 DOI:10.3390/polym17192615
Shangjie Jiang, Yonghui Zuo
{"title":"光敏水溶性超疏水涂料的研制及其改性纸的性能。","authors":"Shangjie Jiang, Yonghui Zuo","doi":"10.3390/polym17192615","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a highly stable light-responsive superhydrophobic paper was successfully fabricated. The process involved polymerizing the synthesized light-responsive monomer PAPAE with the hydrophilic monomer 2-hydroxyethyl methacrylate(HEMA), the fluorine-containing monomer hexafluorobutyl methacrylate(HFMA),and 3-trimethoxysilyl-propyl methacrylate(TSPM), followed by grafting (3-Aminopropyl) triethoxysilane (APTES)-modified SiO<sub>2</sub> nanoparticles onto the polymer to enhance surface roughness, and subsequently applying this composite to the paper surface. When the monomer ratio in the polymer was HFMA:TSPM:PAPAE:HEMA = 0.2:0.2:0.4:0.2, the resulting coating exhibited good water solubility, enabling the modified paper to achieve reversible wettability transitions under light irradiation. At a SiO<sub>2</sub>-to-polymer ratio of 0.3, the contact angle variation range reached its maximum (96-156.8°). The proposed method for fabricating superhydrophobic paper not only offers relative simplicity, low cost, and strong versatility but also imparts the paper with excellent weather resistance, abrasion resistance, and ultrasonic durability, highlighting its great potential for practical applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12527038/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of Photoresponsive Water-Soluble Superhydrophobic Coatings and Properties of the Modified Paper.\",\"authors\":\"Shangjie Jiang, Yonghui Zuo\",\"doi\":\"10.3390/polym17192615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a highly stable light-responsive superhydrophobic paper was successfully fabricated. The process involved polymerizing the synthesized light-responsive monomer PAPAE with the hydrophilic monomer 2-hydroxyethyl methacrylate(HEMA), the fluorine-containing monomer hexafluorobutyl methacrylate(HFMA),and 3-trimethoxysilyl-propyl methacrylate(TSPM), followed by grafting (3-Aminopropyl) triethoxysilane (APTES)-modified SiO<sub>2</sub> nanoparticles onto the polymer to enhance surface roughness, and subsequently applying this composite to the paper surface. When the monomer ratio in the polymer was HFMA:TSPM:PAPAE:HEMA = 0.2:0.2:0.4:0.2, the resulting coating exhibited good water solubility, enabling the modified paper to achieve reversible wettability transitions under light irradiation. At a SiO<sub>2</sub>-to-polymer ratio of 0.3, the contact angle variation range reached its maximum (96-156.8°). The proposed method for fabricating superhydrophobic paper not only offers relative simplicity, low cost, and strong versatility but also imparts the paper with excellent weather resistance, abrasion resistance, and ultrasonic durability, highlighting its great potential for practical applications.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 19\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12527038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17192615\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17192615","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究成功制备了一种高度稳定的光响应超疏水纸。该工艺包括将合成的光响应单体PAPAE与亲水性单体2-甲基丙烯酸羟乙基酯(HEMA)、含氟单体六氟甲基丙烯酸丁酯(HFMA)和3-三甲氧基基甲基丙烯酸丙酯(TSPM)聚合,然后将(3-氨基丙基)三乙氧基硅烷(APTES)修饰的SiO2纳米颗粒接枝到聚合物上以增强表面粗糙度,随后将该复合材料应用于纸张表面。当聚合物中单体比例为HFMA:TSPM:PAPAE:HEMA = 0.2:0.2:0.4:0.2时,得到的涂层具有良好的水溶性,使改性纸在光照下实现了可逆性的润湿性转变。当sio2与聚合物的比例为0.3时,接触角变化范围最大(96 ~ 156.8°)。该方法制备的超疏水纸不仅相对简单、成本低、通用性强,而且具有优异的耐候性、耐磨性和超声波耐久性,具有很大的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Photoresponsive Water-Soluble Superhydrophobic Coatings and Properties of the Modified Paper.

In this study, a highly stable light-responsive superhydrophobic paper was successfully fabricated. The process involved polymerizing the synthesized light-responsive monomer PAPAE with the hydrophilic monomer 2-hydroxyethyl methacrylate(HEMA), the fluorine-containing monomer hexafluorobutyl methacrylate(HFMA),and 3-trimethoxysilyl-propyl methacrylate(TSPM), followed by grafting (3-Aminopropyl) triethoxysilane (APTES)-modified SiO2 nanoparticles onto the polymer to enhance surface roughness, and subsequently applying this composite to the paper surface. When the monomer ratio in the polymer was HFMA:TSPM:PAPAE:HEMA = 0.2:0.2:0.4:0.2, the resulting coating exhibited good water solubility, enabling the modified paper to achieve reversible wettability transitions under light irradiation. At a SiO2-to-polymer ratio of 0.3, the contact angle variation range reached its maximum (96-156.8°). The proposed method for fabricating superhydrophobic paper not only offers relative simplicity, low cost, and strong versatility but also imparts the paper with excellent weather resistance, abrasion resistance, and ultrasonic durability, highlighting its great potential for practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信