scTFBridge:单细胞多组学中基于tf基序结合的基因调控推断的解缠深度生成模型。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Feng-Ao Wang, Chenxin Yi, Jiajun Chen, Ruikun He, Junwei Liu, Yixue Li
{"title":"scTFBridge:单细胞多组学中基于tf基序结合的基因调控推断的解缠深度生成模型。","authors":"Feng-Ao Wang, Chenxin Yi, Jiajun Chen, Ruikun He, Junwei Liu, Yixue Li","doi":"10.1038/s41467-025-64227-y","DOIUrl":null,"url":null,"abstract":"<p><p>The interplay between transcription factors (TFs) and regulatory elements (REs) drives gene transcription, forming gene regulatory networks (GRNs). Advances in single-cell technologies now enable simultaneous measurement of RNA expression and chromatin accessibility, offering unprecedented opportunities for GRN inference at single-cell resolution. However, heterogeneity across omics layers complicates regulatory feature extraction. We present scTFBridge, a multi-omics deep generative model for GRN inference. scTFBridge disentangles latent spaces into shared and specific components across omics layers. By integrating TF-motif binding knowledge, scTFBridge aligns shared embeddings with specific TF regulatory activities, enhancing biological interpretability. Using explainability methods, scTFBridge computes regulatory scores for REs and TFs, enabling robust GRN inference. Our results further demonstrate that scTFBridge can identify cell-type-specific susceptibility genes and distinct regulatory programs, providing insights into gene regulation mechanisms at the single-cell level.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"9166"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12528484/pdf/","citationCount":"0","resultStr":"{\"title\":\"scTFBridge: a disentangled deep generative model informed by TF-motif binding for gene regulation inference in single-cell multi-omics.\",\"authors\":\"Feng-Ao Wang, Chenxin Yi, Jiajun Chen, Ruikun He, Junwei Liu, Yixue Li\",\"doi\":\"10.1038/s41467-025-64227-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interplay between transcription factors (TFs) and regulatory elements (REs) drives gene transcription, forming gene regulatory networks (GRNs). Advances in single-cell technologies now enable simultaneous measurement of RNA expression and chromatin accessibility, offering unprecedented opportunities for GRN inference at single-cell resolution. However, heterogeneity across omics layers complicates regulatory feature extraction. We present scTFBridge, a multi-omics deep generative model for GRN inference. scTFBridge disentangles latent spaces into shared and specific components across omics layers. By integrating TF-motif binding knowledge, scTFBridge aligns shared embeddings with specific TF regulatory activities, enhancing biological interpretability. Using explainability methods, scTFBridge computes regulatory scores for REs and TFs, enabling robust GRN inference. Our results further demonstrate that scTFBridge can identify cell-type-specific susceptibility genes and distinct regulatory programs, providing insights into gene regulation mechanisms at the single-cell level.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"9166\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12528484/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-64227-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64227-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

转录因子(tf)和调控元件(REs)之间的相互作用驱动基因转录,形成基因调控网络(grn)。单细胞技术的进步现在可以同时测量RNA表达和染色质可及性,为单细胞分辨率的GRN推断提供前所未有的机会。然而,组学层之间的异质性使调节特征提取变得复杂。我们提出了scTFBridge,一个用于GRN推理的多组学深度生成模型。scTFBridge将潜在空间分解为组学层之间的共享和特定组件。通过整合TF基序结合知识,scTFBridge将共享嵌入与特定的TF调控活动对齐,增强了生物学可解释性。scTFBridge使用可解释性方法计算REs和tf的调节分数,从而实现稳健的GRN推断。我们的研究结果进一步表明,scTFBridge可以识别细胞类型特异性易感基因和不同的调控程序,为单细胞水平的基因调控机制提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
scTFBridge: a disentangled deep generative model informed by TF-motif binding for gene regulation inference in single-cell multi-omics.

The interplay between transcription factors (TFs) and regulatory elements (REs) drives gene transcription, forming gene regulatory networks (GRNs). Advances in single-cell technologies now enable simultaneous measurement of RNA expression and chromatin accessibility, offering unprecedented opportunities for GRN inference at single-cell resolution. However, heterogeneity across omics layers complicates regulatory feature extraction. We present scTFBridge, a multi-omics deep generative model for GRN inference. scTFBridge disentangles latent spaces into shared and specific components across omics layers. By integrating TF-motif binding knowledge, scTFBridge aligns shared embeddings with specific TF regulatory activities, enhancing biological interpretability. Using explainability methods, scTFBridge computes regulatory scores for REs and TFs, enabling robust GRN inference. Our results further demonstrate that scTFBridge can identify cell-type-specific susceptibility genes and distinct regulatory programs, providing insights into gene regulation mechanisms at the single-cell level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信