Jiaobing Tu, Connor D Flynn, Jeonghee Yeom, Zhenwei Wu, Shana O Kelley, Wei Gao
{"title":"可穿戴生物分子传感纳米技术在慢性疾病管理中的应用。","authors":"Jiaobing Tu, Connor D Flynn, Jeonghee Yeom, Zhenwei Wu, Shana O Kelley, Wei Gao","doi":"10.1038/s41565-025-02010-2","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade, consumer wearable sensors have become increasingly ubiquitous in health monitoring, enabling the widespread tracking of key biophysical parameters. The transition towards next-generation body-interfaced biomolecular sensing technologies, fuelled by the integration of reagentless sensing strategies with advanced nanomaterials, marks the next substantial leap forward. These innovations enable unobtrusive, multimodal monitoring of both physiological parameters and biochemical disease markers in real time. This Review examines the current generation of body-interfaced biomolecular sensing technologies, with a particular emphasis on materials innovation and nanotechnological advancements, and discusses their pivotal role in chronic disease monitoring. The discussion extends to the challenges and prospects in this rapidly evolving field, highlighting the potential for materials-focused approaches to transform the landscape of chronic disease monitoring and management with body-interfaced bioelectronics. By harnessing the power of materials and nanotechnological innovations, these biomolecular sensing technologies promise to enhance diagnostic capabilities and foster a more proactive, personalized approach to combating these diseases.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":" ","pages":""},"PeriodicalIF":34.9000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wearable biomolecular sensing nanotechnologies in chronic disease management.\",\"authors\":\"Jiaobing Tu, Connor D Flynn, Jeonghee Yeom, Zhenwei Wu, Shana O Kelley, Wei Gao\",\"doi\":\"10.1038/s41565-025-02010-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past decade, consumer wearable sensors have become increasingly ubiquitous in health monitoring, enabling the widespread tracking of key biophysical parameters. The transition towards next-generation body-interfaced biomolecular sensing technologies, fuelled by the integration of reagentless sensing strategies with advanced nanomaterials, marks the next substantial leap forward. These innovations enable unobtrusive, multimodal monitoring of both physiological parameters and biochemical disease markers in real time. This Review examines the current generation of body-interfaced biomolecular sensing technologies, with a particular emphasis on materials innovation and nanotechnological advancements, and discusses their pivotal role in chronic disease monitoring. The discussion extends to the challenges and prospects in this rapidly evolving field, highlighting the potential for materials-focused approaches to transform the landscape of chronic disease monitoring and management with body-interfaced bioelectronics. By harnessing the power of materials and nanotechnological innovations, these biomolecular sensing technologies promise to enhance diagnostic capabilities and foster a more proactive, personalized approach to combating these diseases.</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":34.9000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-025-02010-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-02010-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Wearable biomolecular sensing nanotechnologies in chronic disease management.
Over the past decade, consumer wearable sensors have become increasingly ubiquitous in health monitoring, enabling the widespread tracking of key biophysical parameters. The transition towards next-generation body-interfaced biomolecular sensing technologies, fuelled by the integration of reagentless sensing strategies with advanced nanomaterials, marks the next substantial leap forward. These innovations enable unobtrusive, multimodal monitoring of both physiological parameters and biochemical disease markers in real time. This Review examines the current generation of body-interfaced biomolecular sensing technologies, with a particular emphasis on materials innovation and nanotechnological advancements, and discusses their pivotal role in chronic disease monitoring. The discussion extends to the challenges and prospects in this rapidly evolving field, highlighting the potential for materials-focused approaches to transform the landscape of chronic disease monitoring and management with body-interfaced bioelectronics. By harnessing the power of materials and nanotechnological innovations, these biomolecular sensing technologies promise to enhance diagnostic capabilities and foster a more proactive, personalized approach to combating these diseases.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.