Al和Cu对基于AlCoCuFeNi体系HEA微观结构和力学性能的影响

IF 3.2 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-09-30 DOI:10.3390/ma18194564
Konrad Chrzan, Barbara Kalandyk, Małgorzata Grudzień-Rakoczy, Łukasz Rakoczy, Kamil Cichocki, Robert Żuczek, Filip Kateusz, Aleksandra Bętkowska, Adelajda Polkowska, Justyna Kasińska
{"title":"Al和Cu对基于AlCoCuFeNi体系HEA微观结构和力学性能的影响","authors":"Konrad Chrzan, Barbara Kalandyk, Małgorzata Grudzień-Rakoczy, Łukasz Rakoczy, Kamil Cichocki, Robert Żuczek, Filip Kateusz, Aleksandra Bętkowska, Adelajda Polkowska, Justyna Kasińska","doi":"10.3390/ma18194564","DOIUrl":null,"url":null,"abstract":"<p><p>Three variants of high-entropy alloys (HEAs) from the AlCoCuFeNi group, containing different amounts of Al and Cu, were developed and produced via induction melting and casting into ceramic moulds. The ingots were homogenized at 1000 °C for 10 h. Analyses revealed that variations in Al and Cu concentrations led to significant changes in the material's microstructure, hardness, strength, and impact strength. In the equiatomic variant, differential scanning calorimetry revealed a peak associated with the phase transformation, indicating that this alloy's microstructure consists of two distinct phases. In contrast, when the concentrations of Al and Cu are reduced, a single-phase microstructure is observed. The equiatomic variant (used as a reference) is characterized by its hardness and brittleness, exhibiting slight ductility, with a tensile strength of 80 MPa, a hardness of 400 HV5, and an impact strength of 1.9 J/cm<sup>2</sup>. However, with adjusted Al contents of 1/2 and Cu contents of 1/4, the alloy displays exceptional strength combined with good plasticity, achieving a tensile strength of up to 450 MPa with 60% elongation, and an impact strength of 215 J/cm<sup>2</sup>. The non-equiatomic variants exhibit a comparatively more straightforward microstructure and enhanced ductility, which may facilitate easier processing of these alloys. Fractography investigation revealed a ductile mode of fracture in the samples.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 19","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12526104/pdf/","citationCount":"0","resultStr":"{\"title\":\"Al and Cu Effect on the Microstructure and Mechanical Properties of HEA Based on the AlCoCuFeNi System.\",\"authors\":\"Konrad Chrzan, Barbara Kalandyk, Małgorzata Grudzień-Rakoczy, Łukasz Rakoczy, Kamil Cichocki, Robert Żuczek, Filip Kateusz, Aleksandra Bętkowska, Adelajda Polkowska, Justyna Kasińska\",\"doi\":\"10.3390/ma18194564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three variants of high-entropy alloys (HEAs) from the AlCoCuFeNi group, containing different amounts of Al and Cu, were developed and produced via induction melting and casting into ceramic moulds. The ingots were homogenized at 1000 °C for 10 h. Analyses revealed that variations in Al and Cu concentrations led to significant changes in the material's microstructure, hardness, strength, and impact strength. In the equiatomic variant, differential scanning calorimetry revealed a peak associated with the phase transformation, indicating that this alloy's microstructure consists of two distinct phases. In contrast, when the concentrations of Al and Cu are reduced, a single-phase microstructure is observed. The equiatomic variant (used as a reference) is characterized by its hardness and brittleness, exhibiting slight ductility, with a tensile strength of 80 MPa, a hardness of 400 HV5, and an impact strength of 1.9 J/cm<sup>2</sup>. However, with adjusted Al contents of 1/2 and Cu contents of 1/4, the alloy displays exceptional strength combined with good plasticity, achieving a tensile strength of up to 450 MPa with 60% elongation, and an impact strength of 215 J/cm<sup>2</sup>. The non-equiatomic variants exhibit a comparatively more straightforward microstructure and enhanced ductility, which may facilitate easier processing of these alloys. Fractography investigation revealed a ductile mode of fracture in the samples.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 19\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12526104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18194564\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18194564","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用感应熔炼法制备了铝、铜含量不同的三种高熵合金(HEAs)。分析表明,Al和Cu浓度的变化导致了材料的显微组织、硬度、强度和冲击强度的显著变化。在等原子变体中,差示扫描量热法发现了一个与相变相关的峰,表明该合金的微观结构由两个不同的相组成。相反,当Al和Cu的浓度降低时,观察到单相组织。等原子变体(用作参考)的特点是其硬度和脆性,具有轻微的延展性,抗拉强度为80 MPa,硬度为400 HV5,冲击强度为1.9 J/cm2。然而,当Al含量为1/2、Cu含量为1/4时,合金表现出优异的强度和良好的塑性,拉伸强度高达450 MPa,伸长率为60%,冲击强度为215 J/cm2。非等原子变体表现出相对更直接的组织和增强的延展性,这可能有利于这些合金的加工。断口形貌分析显示试样呈延性断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Al and Cu Effect on the Microstructure and Mechanical Properties of HEA Based on the AlCoCuFeNi System.

Al and Cu Effect on the Microstructure and Mechanical Properties of HEA Based on the AlCoCuFeNi System.

Al and Cu Effect on the Microstructure and Mechanical Properties of HEA Based on the AlCoCuFeNi System.

Al and Cu Effect on the Microstructure and Mechanical Properties of HEA Based on the AlCoCuFeNi System.

Three variants of high-entropy alloys (HEAs) from the AlCoCuFeNi group, containing different amounts of Al and Cu, were developed and produced via induction melting and casting into ceramic moulds. The ingots were homogenized at 1000 °C for 10 h. Analyses revealed that variations in Al and Cu concentrations led to significant changes in the material's microstructure, hardness, strength, and impact strength. In the equiatomic variant, differential scanning calorimetry revealed a peak associated with the phase transformation, indicating that this alloy's microstructure consists of two distinct phases. In contrast, when the concentrations of Al and Cu are reduced, a single-phase microstructure is observed. The equiatomic variant (used as a reference) is characterized by its hardness and brittleness, exhibiting slight ductility, with a tensile strength of 80 MPa, a hardness of 400 HV5, and an impact strength of 1.9 J/cm2. However, with adjusted Al contents of 1/2 and Cu contents of 1/4, the alloy displays exceptional strength combined with good plasticity, achieving a tensile strength of up to 450 MPa with 60% elongation, and an impact strength of 215 J/cm2. The non-equiatomic variants exhibit a comparatively more straightforward microstructure and enhanced ductility, which may facilitate easier processing of these alloys. Fractography investigation revealed a ductile mode of fracture in the samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信