Miu Tsz-Wai So, Ata Ullah, Abdul Waris, Fahad A Alhumaydhi
{"title":"精神分裂症中受损神经发生的病因学作用:与炎症、微生物组和激素信号的相互作用。","authors":"Miu Tsz-Wai So, Ata Ullah, Abdul Waris, Fahad A Alhumaydhi","doi":"10.3390/ijms26199814","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia is a prevailing yet severely debilitating psychiatric disorder characterized by a convoluted etiology. Although antipsychotics have been available for over half a century, they primarily mitigate symptoms rather than providing definitive care. This limitation suggests that the neurotransmitter systems targeted by these medications are not the root cause of the disorder. Ongoing research seeks to elucidate the cellular, molecular, and circuitry pathways that contribute to the development of schizophrenia. Unfortunately, its precise pathogenesis remains incompletely understood. Accumulating evidence implicates dysregulated neurogenesis and aberrant neurodevelopmental processes as key contributors to disease progression. Recent advances in proteomics and imaging technology have facilitated the emergence of novel models of schizophrenia, emphasizing the roles of neuroinflammation, sex steroids, and cortisol. This paper aims to organize and map the intercorrelations and potential causal effects between various mechanistic models to gain deeper insight on how these mechanisms contribute to the cause, risks, and symptoms of the disorder. Furthermore, we discuss the potential therapeutic strategies that target these pathological pathways. Elucidating these mechanisms may ultimately advance our understanding of schizophrenia's etiological foundations and guide the development of curative interventions.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524466/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Etiological Role of Impaired Neurogenesis in Schizophrenia: Interactions with Inflammatory, Microbiome and Hormonal Signaling.\",\"authors\":\"Miu Tsz-Wai So, Ata Ullah, Abdul Waris, Fahad A Alhumaydhi\",\"doi\":\"10.3390/ijms26199814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Schizophrenia is a prevailing yet severely debilitating psychiatric disorder characterized by a convoluted etiology. Although antipsychotics have been available for over half a century, they primarily mitigate symptoms rather than providing definitive care. This limitation suggests that the neurotransmitter systems targeted by these medications are not the root cause of the disorder. Ongoing research seeks to elucidate the cellular, molecular, and circuitry pathways that contribute to the development of schizophrenia. Unfortunately, its precise pathogenesis remains incompletely understood. Accumulating evidence implicates dysregulated neurogenesis and aberrant neurodevelopmental processes as key contributors to disease progression. Recent advances in proteomics and imaging technology have facilitated the emergence of novel models of schizophrenia, emphasizing the roles of neuroinflammation, sex steroids, and cortisol. This paper aims to organize and map the intercorrelations and potential causal effects between various mechanistic models to gain deeper insight on how these mechanisms contribute to the cause, risks, and symptoms of the disorder. Furthermore, we discuss the potential therapeutic strategies that target these pathological pathways. Elucidating these mechanisms may ultimately advance our understanding of schizophrenia's etiological foundations and guide the development of curative interventions.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"26 19\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524466/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms26199814\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199814","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Etiological Role of Impaired Neurogenesis in Schizophrenia: Interactions with Inflammatory, Microbiome and Hormonal Signaling.
Schizophrenia is a prevailing yet severely debilitating psychiatric disorder characterized by a convoluted etiology. Although antipsychotics have been available for over half a century, they primarily mitigate symptoms rather than providing definitive care. This limitation suggests that the neurotransmitter systems targeted by these medications are not the root cause of the disorder. Ongoing research seeks to elucidate the cellular, molecular, and circuitry pathways that contribute to the development of schizophrenia. Unfortunately, its precise pathogenesis remains incompletely understood. Accumulating evidence implicates dysregulated neurogenesis and aberrant neurodevelopmental processes as key contributors to disease progression. Recent advances in proteomics and imaging technology have facilitated the emergence of novel models of schizophrenia, emphasizing the roles of neuroinflammation, sex steroids, and cortisol. This paper aims to organize and map the intercorrelations and potential causal effects between various mechanistic models to gain deeper insight on how these mechanisms contribute to the cause, risks, and symptoms of the disorder. Furthermore, we discuss the potential therapeutic strategies that target these pathological pathways. Elucidating these mechanisms may ultimately advance our understanding of schizophrenia's etiological foundations and guide the development of curative interventions.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).