Eleni Tsakiri, Martina Samiotaki, Efthimios M C Skoulakis, Katerina Papanikolopoulou
{"title":"果蝇中人类Tau蛋白的时间相互作用组定位揭示了线粒体累进参与和Porin/ vdac1依赖性毒性调节。","authors":"Eleni Tsakiri, Martina Samiotaki, Efthimios M C Skoulakis, Katerina Papanikolopoulou","doi":"10.3390/ijms26199741","DOIUrl":null,"url":null,"abstract":"<p><p>Tau protein misfolding and aggregation are central to Tauopathies, yet the temporal dynamics of Tau interactions in vivo remain poorly understood. Here, we applied quantitative proteomics to demonstrate that the interactome of human Tau in adult Drosophila brains changes dynamically over a 12-day time course, revealing a progressive shift from early cytosolic and ribosomal associations to late enrichment of mitochondrial and synaptic partners. Notably, the mitochondrial pore protein Porin/VDAC1 was identified as a late-stage interactor and functional analyses demonstrated that Tau overexpression impairs mitochondrial respiration, elevates oxidative damage, and disrupts carbohydrate homeostasis. To validate this temporally specific interaction, Porin was downregulated, resulting in reduced Tau mitochondrial association, phosphorylation and aggregation. Paradoxically, however, Porin attenuation exacerbated Tau-induced toxicity, including shortened lifespan, locomotor deficits, and impaired learning. These findings indicate that while Porin facilitates pathological Tau modifications, it is also essential for neuronal resilience, highlighting a complex role in modulating Tau toxicity. Our study provides a temporal map of Tau-associated proteome changes in vivo and identifies mitochondria as critical mediators of Tau-driven neurodegeneration.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524354/pdf/","citationCount":"0","resultStr":"{\"title\":\"Temporal Interactome Mapping of Human Tau in Drosophila Reveals Progressive Mitochondrial Engagement and Porin/VDAC1-Dependent Modulation of Toxicity.\",\"authors\":\"Eleni Tsakiri, Martina Samiotaki, Efthimios M C Skoulakis, Katerina Papanikolopoulou\",\"doi\":\"10.3390/ijms26199741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tau protein misfolding and aggregation are central to Tauopathies, yet the temporal dynamics of Tau interactions in vivo remain poorly understood. Here, we applied quantitative proteomics to demonstrate that the interactome of human Tau in adult Drosophila brains changes dynamically over a 12-day time course, revealing a progressive shift from early cytosolic and ribosomal associations to late enrichment of mitochondrial and synaptic partners. Notably, the mitochondrial pore protein Porin/VDAC1 was identified as a late-stage interactor and functional analyses demonstrated that Tau overexpression impairs mitochondrial respiration, elevates oxidative damage, and disrupts carbohydrate homeostasis. To validate this temporally specific interaction, Porin was downregulated, resulting in reduced Tau mitochondrial association, phosphorylation and aggregation. Paradoxically, however, Porin attenuation exacerbated Tau-induced toxicity, including shortened lifespan, locomotor deficits, and impaired learning. These findings indicate that while Porin facilitates pathological Tau modifications, it is also essential for neuronal resilience, highlighting a complex role in modulating Tau toxicity. Our study provides a temporal map of Tau-associated proteome changes in vivo and identifies mitochondria as critical mediators of Tau-driven neurodegeneration.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"26 19\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524354/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms26199741\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199741","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporal Interactome Mapping of Human Tau in Drosophila Reveals Progressive Mitochondrial Engagement and Porin/VDAC1-Dependent Modulation of Toxicity.
Tau protein misfolding and aggregation are central to Tauopathies, yet the temporal dynamics of Tau interactions in vivo remain poorly understood. Here, we applied quantitative proteomics to demonstrate that the interactome of human Tau in adult Drosophila brains changes dynamically over a 12-day time course, revealing a progressive shift from early cytosolic and ribosomal associations to late enrichment of mitochondrial and synaptic partners. Notably, the mitochondrial pore protein Porin/VDAC1 was identified as a late-stage interactor and functional analyses demonstrated that Tau overexpression impairs mitochondrial respiration, elevates oxidative damage, and disrupts carbohydrate homeostasis. To validate this temporally specific interaction, Porin was downregulated, resulting in reduced Tau mitochondrial association, phosphorylation and aggregation. Paradoxically, however, Porin attenuation exacerbated Tau-induced toxicity, including shortened lifespan, locomotor deficits, and impaired learning. These findings indicate that while Porin facilitates pathological Tau modifications, it is also essential for neuronal resilience, highlighting a complex role in modulating Tau toxicity. Our study provides a temporal map of Tau-associated proteome changes in vivo and identifies mitochondria as critical mediators of Tau-driven neurodegeneration.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).