{"title":"Chetomin在人黑色素瘤细胞中的抗增殖和促凋亡作用。","authors":"Laura Jonderko, Anna Choromańska","doi":"10.3390/ijms26199835","DOIUrl":null,"url":null,"abstract":"<p><p>Melanoma is an aggressive malignancy with poor prognosis in advanced stages, and current therapeutic options provide only limited benefits, highlighting the need for novel treatments. Chetomin, a fungal metabolite isolated from <i>Chaetomium cochliodes</i>, has been reported to exhibit diverse biological activities, yet its effects on melanoma cells remain poorly understood. In this study, we evaluated the antitumor potential of chetomin using the human A375 melanoma cell line. Cell viability was assessed with MTT and CellTiter-Glo<sup>®</sup> assays, which revealed a significant dose- and time-dependent reduction in proliferation following chetomin exposure. Apoptotic effects were confirmed through Annexin V staining, and immunocytochemical analysis demonstrated a concentration-dependent increase in cleaved PARP1, indicating activation of programmed cell death pathways. Collectively, these findings demonstrate that chetomin effectively inhibits melanoma cell growth and promotes apoptosis. The results suggest that chetomin represents a promising lead compound for melanoma therapy, warranting further investigation into its precise molecular mechanisms.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12525530/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antiproliferative and Proapoptotic Effects of Chetomin in Human Melanoma Cells.\",\"authors\":\"Laura Jonderko, Anna Choromańska\",\"doi\":\"10.3390/ijms26199835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Melanoma is an aggressive malignancy with poor prognosis in advanced stages, and current therapeutic options provide only limited benefits, highlighting the need for novel treatments. Chetomin, a fungal metabolite isolated from <i>Chaetomium cochliodes</i>, has been reported to exhibit diverse biological activities, yet its effects on melanoma cells remain poorly understood. In this study, we evaluated the antitumor potential of chetomin using the human A375 melanoma cell line. Cell viability was assessed with MTT and CellTiter-Glo<sup>®</sup> assays, which revealed a significant dose- and time-dependent reduction in proliferation following chetomin exposure. Apoptotic effects were confirmed through Annexin V staining, and immunocytochemical analysis demonstrated a concentration-dependent increase in cleaved PARP1, indicating activation of programmed cell death pathways. Collectively, these findings demonstrate that chetomin effectively inhibits melanoma cell growth and promotes apoptosis. The results suggest that chetomin represents a promising lead compound for melanoma therapy, warranting further investigation into its precise molecular mechanisms.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"26 19\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12525530/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms26199835\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199835","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Antiproliferative and Proapoptotic Effects of Chetomin in Human Melanoma Cells.
Melanoma is an aggressive malignancy with poor prognosis in advanced stages, and current therapeutic options provide only limited benefits, highlighting the need for novel treatments. Chetomin, a fungal metabolite isolated from Chaetomium cochliodes, has been reported to exhibit diverse biological activities, yet its effects on melanoma cells remain poorly understood. In this study, we evaluated the antitumor potential of chetomin using the human A375 melanoma cell line. Cell viability was assessed with MTT and CellTiter-Glo® assays, which revealed a significant dose- and time-dependent reduction in proliferation following chetomin exposure. Apoptotic effects were confirmed through Annexin V staining, and immunocytochemical analysis demonstrated a concentration-dependent increase in cleaved PARP1, indicating activation of programmed cell death pathways. Collectively, these findings demonstrate that chetomin effectively inhibits melanoma cell growth and promotes apoptosis. The results suggest that chetomin represents a promising lead compound for melanoma therapy, warranting further investigation into its precise molecular mechanisms.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).