骨髓生态位中脂肪细胞与肿瘤的相互作用:对转移和治疗的影响。

IF 4.9 2区 生物学
Alhomam Dabaliz, Mohammad Nawar Al Hakawati, Najmuddeen Alrashdan, Sarah Alrashdan, Mohamad Bakir, Khalid S Mohammad
{"title":"骨髓生态位中脂肪细胞与肿瘤的相互作用:对转移和治疗的影响。","authors":"Alhomam Dabaliz, Mohammad Nawar Al Hakawati, Najmuddeen Alrashdan, Sarah Alrashdan, Mohamad Bakir, Khalid S Mohammad","doi":"10.3390/ijms26199781","DOIUrl":null,"url":null,"abstract":"<p><p>Bone metastases continue to be a major cause of morbidity and mortality in patients with advanced cancers, driven by the dynamic remodeling of the bone marrow niche. Traditionally viewed as passive space-fillers, bone marrow adipocytes (BMAs) are now recognized as active regulators of tumor growth, therapeutic resistance, and skeletal pathology. BMAs comprise a significant portion of the adult marrow space, particularly in aging and obesity, and facilitate metastatic colonization through various mechanisms. These include metabolic coupling, where adipocyte-derived fatty acids fuel tumor oxidative phosphorylation; the secretion of adipokines such as leptin and IL-6, which promote epithelial-to-mesenchymal transition, invasion, and immune evasion; regulation of osteoclastogenesis via RANKL expression; and the release of extracellular vesicles that reprogram cancer cell metabolism. Clinical and experimental studies show that BMA expansion correlates with increased tumor burden and poorer outcomes in breast, prostate, lung cancers, and multiple myeloma. Additionally, BMAs actively promote therapeutic resistance through metabolic rewiring and drug sequestration. Experimental models, ranging from in vitro co-cultures to in vivo patient-derived xenografts, demonstrate the complex roles of BMAs and also reveal important translational gaps. Despite promising preclinical approaches such as metabolic inhibitors, PPARγ modulation, adipokine blockade, and lifestyle changes, no therapies directly targeting BMAs have yet reached clinical practice. This review compiles current evidence on the biology of BMAs, their tumor-promoting interactions, and potential therapeutic strategies, while also highlighting unresolved questions about BMA heterogeneity, lipid flux, and immunometabolic crosstalk. By revealing how bone marrow adipocytes actively shape the metastatic niche through metabolic, endocrine, and immunological pathways, this review highlights their potential as novel biomarkers and therapeutic targets for improving the management of bone metastases.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12525404/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adipocyte-Tumor Interactions in the Bone Marrow Niche: Implications for Metastasis and Therapy.\",\"authors\":\"Alhomam Dabaliz, Mohammad Nawar Al Hakawati, Najmuddeen Alrashdan, Sarah Alrashdan, Mohamad Bakir, Khalid S Mohammad\",\"doi\":\"10.3390/ijms26199781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone metastases continue to be a major cause of morbidity and mortality in patients with advanced cancers, driven by the dynamic remodeling of the bone marrow niche. Traditionally viewed as passive space-fillers, bone marrow adipocytes (BMAs) are now recognized as active regulators of tumor growth, therapeutic resistance, and skeletal pathology. BMAs comprise a significant portion of the adult marrow space, particularly in aging and obesity, and facilitate metastatic colonization through various mechanisms. These include metabolic coupling, where adipocyte-derived fatty acids fuel tumor oxidative phosphorylation; the secretion of adipokines such as leptin and IL-6, which promote epithelial-to-mesenchymal transition, invasion, and immune evasion; regulation of osteoclastogenesis via RANKL expression; and the release of extracellular vesicles that reprogram cancer cell metabolism. Clinical and experimental studies show that BMA expansion correlates with increased tumor burden and poorer outcomes in breast, prostate, lung cancers, and multiple myeloma. Additionally, BMAs actively promote therapeutic resistance through metabolic rewiring and drug sequestration. Experimental models, ranging from in vitro co-cultures to in vivo patient-derived xenografts, demonstrate the complex roles of BMAs and also reveal important translational gaps. Despite promising preclinical approaches such as metabolic inhibitors, PPARγ modulation, adipokine blockade, and lifestyle changes, no therapies directly targeting BMAs have yet reached clinical practice. This review compiles current evidence on the biology of BMAs, their tumor-promoting interactions, and potential therapeutic strategies, while also highlighting unresolved questions about BMA heterogeneity, lipid flux, and immunometabolic crosstalk. By revealing how bone marrow adipocytes actively shape the metastatic niche through metabolic, endocrine, and immunological pathways, this review highlights their potential as novel biomarkers and therapeutic targets for improving the management of bone metastases.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"26 19\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12525404/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms26199781\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199781","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于骨髓生态位的动态重塑,骨转移仍然是晚期癌症患者发病和死亡的主要原因。骨髓脂肪细胞(BMAs)传统上被认为是被动的空间填充剂,现在被认为是肿瘤生长、治疗抵抗和骨骼病理的主动调节剂。BMAs包含成人骨髓空间的重要部分,特别是在衰老和肥胖中,并通过各种机制促进转移定植。这些包括代谢偶联,其中脂肪细胞衍生的脂肪酸促进肿瘤氧化磷酸化;脂肪因子如瘦素和IL-6的分泌,促进上皮向间质转化、侵袭和免疫逃避;通过RANKL表达调控破骨细胞生成;以及细胞外囊泡的释放,这些囊泡可以重新编程癌细胞的新陈代谢。临床和实验研究表明,BMA扩张与乳腺癌、前列腺癌、肺癌和多发性骨髓瘤的肿瘤负荷增加和预后不良相关。此外,bma通过代谢重组和药物隔离积极促进治疗耐药性。实验模型,从体外共培养到体内患者来源的异种移植物,证明了BMAs的复杂作用,也揭示了重要的翻译空白。尽管有很有前景的临床前方法,如代谢抑制剂、PPARγ调节、脂肪因子阻断和生活方式改变,但目前还没有直接针对BMAs的治疗方法进入临床实践。本文综述了BMA的生物学、促肿瘤相互作用和潜在治疗策略的最新证据,同时也强调了BMA异质性、脂质通量和免疫代谢串扰等尚未解决的问题。通过揭示骨髓脂肪细胞如何通过代谢、内分泌和免疫途径积极塑造转移生态位,本综述强调了它们作为改善骨转移管理的新型生物标志物和治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adipocyte-Tumor Interactions in the Bone Marrow Niche: Implications for Metastasis and Therapy.

Adipocyte-Tumor Interactions in the Bone Marrow Niche: Implications for Metastasis and Therapy.

Adipocyte-Tumor Interactions in the Bone Marrow Niche: Implications for Metastasis and Therapy.

Bone metastases continue to be a major cause of morbidity and mortality in patients with advanced cancers, driven by the dynamic remodeling of the bone marrow niche. Traditionally viewed as passive space-fillers, bone marrow adipocytes (BMAs) are now recognized as active regulators of tumor growth, therapeutic resistance, and skeletal pathology. BMAs comprise a significant portion of the adult marrow space, particularly in aging and obesity, and facilitate metastatic colonization through various mechanisms. These include metabolic coupling, where adipocyte-derived fatty acids fuel tumor oxidative phosphorylation; the secretion of adipokines such as leptin and IL-6, which promote epithelial-to-mesenchymal transition, invasion, and immune evasion; regulation of osteoclastogenesis via RANKL expression; and the release of extracellular vesicles that reprogram cancer cell metabolism. Clinical and experimental studies show that BMA expansion correlates with increased tumor burden and poorer outcomes in breast, prostate, lung cancers, and multiple myeloma. Additionally, BMAs actively promote therapeutic resistance through metabolic rewiring and drug sequestration. Experimental models, ranging from in vitro co-cultures to in vivo patient-derived xenografts, demonstrate the complex roles of BMAs and also reveal important translational gaps. Despite promising preclinical approaches such as metabolic inhibitors, PPARγ modulation, adipokine blockade, and lifestyle changes, no therapies directly targeting BMAs have yet reached clinical practice. This review compiles current evidence on the biology of BMAs, their tumor-promoting interactions, and potential therapeutic strategies, while also highlighting unresolved questions about BMA heterogeneity, lipid flux, and immunometabolic crosstalk. By revealing how bone marrow adipocytes actively shape the metastatic niche through metabolic, endocrine, and immunological pathways, this review highlights their potential as novel biomarkers and therapeutic targets for improving the management of bone metastases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信