CTCF介导小鼠心脏顺式调控中心

IF 4.9 2区 生物学
Mick Lee, Loïc Mangnier, Cory C Padilla, Dominic Paul Lee, Wilson Tan, Wen Hao Zheng, Louis Hanqiang Gan, Ching Kit Chen, Yee Phong Lim, Rina Miao Qin Wang, Peter Yiqing Li, Yonglin Zhu, Steve Bilodeau, Alexandre Bureau, Roger Sik-Yin Foo, Chukwuemeka George Anene-Nzelu
{"title":"CTCF介导小鼠心脏顺式调控中心","authors":"Mick Lee, Loïc Mangnier, Cory C Padilla, Dominic Paul Lee, Wilson Tan, Wen Hao Zheng, Louis Hanqiang Gan, Ching Kit Chen, Yee Phong Lim, Rina Miao Qin Wang, Peter Yiqing Li, Yonglin Zhu, Steve Bilodeau, Alexandre Bureau, Roger Sik-Yin Foo, Chukwuemeka George Anene-Nzelu","doi":"10.3390/ijms26199834","DOIUrl":null,"url":null,"abstract":"<p><p>The 3D chromatin architecture establishes a complex network of genes and regulatory elements necessary for transcriptomic regulation in development and disease. This network can be modeled by cis-regulatory hubs (CRH), which underscore the local functional interactions between enhancers and promoter regions and differ from other higher-order chromatin structures such as topologically associated domains (TAD). The activity-by-contact (ABC) model of enhancer-promoter regulation has been recently used in the identification of these CRHs, but little is known about the role of transcription factor CCTC binding factor (CTCF) on ABC scores and their consequent impact on CRHs. Here, we show that the loss of CTCF leads to a reorganization of the ABC-derived rankings of putative enhancers in the mouse heart, a global reduction in the total number of CRHs and an increase in the size of CRHs. Furthermore, CTCF loss leads to a higher percentage of CRHs that cross TAD boundaries. These results provide additional evidence to support the importance of CTCF in forming the regulatory networks necessary for gene regulation.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524426/pdf/","citationCount":"0","resultStr":"{\"title\":\"CTCF Mediates the Cis-Regulatory Hubs in Mouse Hearts.\",\"authors\":\"Mick Lee, Loïc Mangnier, Cory C Padilla, Dominic Paul Lee, Wilson Tan, Wen Hao Zheng, Louis Hanqiang Gan, Ching Kit Chen, Yee Phong Lim, Rina Miao Qin Wang, Peter Yiqing Li, Yonglin Zhu, Steve Bilodeau, Alexandre Bureau, Roger Sik-Yin Foo, Chukwuemeka George Anene-Nzelu\",\"doi\":\"10.3390/ijms26199834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 3D chromatin architecture establishes a complex network of genes and regulatory elements necessary for transcriptomic regulation in development and disease. This network can be modeled by cis-regulatory hubs (CRH), which underscore the local functional interactions between enhancers and promoter regions and differ from other higher-order chromatin structures such as topologically associated domains (TAD). The activity-by-contact (ABC) model of enhancer-promoter regulation has been recently used in the identification of these CRHs, but little is known about the role of transcription factor CCTC binding factor (CTCF) on ABC scores and their consequent impact on CRHs. Here, we show that the loss of CTCF leads to a reorganization of the ABC-derived rankings of putative enhancers in the mouse heart, a global reduction in the total number of CRHs and an increase in the size of CRHs. Furthermore, CTCF loss leads to a higher percentage of CRHs that cross TAD boundaries. These results provide additional evidence to support the importance of CTCF in forming the regulatory networks necessary for gene regulation.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"26 19\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524426/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms26199834\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199834","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三维染色质结构建立了发育和疾病中转录组调控所需的基因和调控元件的复杂网络。这个网络可以通过顺式调控枢纽(CRH)来建模,它强调增强子和启动子区域之间的局部功能相互作用,不同于其他高阶染色质结构,如拓扑相关结构域(TAD)。最近,增强子-启动子调控的接触活性(ABC)模型已被用于鉴定这些CRHs,但转录因子CCTC结合因子(CTCF)在ABC评分中的作用及其对CRHs的影响知之甚少。在这里,我们发现CTCF的缺失导致小鼠心脏中abc衍生的假定增强子排名的重组,CRHs总数的全球减少和CRHs大小的增加。此外,CTCF损失导致更高百分比的crh跨越TAD边界。这些结果为支持CTCF在形成基因调控所需的调控网络中的重要性提供了额外的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CTCF Mediates the Cis-Regulatory Hubs in Mouse Hearts.

The 3D chromatin architecture establishes a complex network of genes and regulatory elements necessary for transcriptomic regulation in development and disease. This network can be modeled by cis-regulatory hubs (CRH), which underscore the local functional interactions between enhancers and promoter regions and differ from other higher-order chromatin structures such as topologically associated domains (TAD). The activity-by-contact (ABC) model of enhancer-promoter regulation has been recently used in the identification of these CRHs, but little is known about the role of transcription factor CCTC binding factor (CTCF) on ABC scores and their consequent impact on CRHs. Here, we show that the loss of CTCF leads to a reorganization of the ABC-derived rankings of putative enhancers in the mouse heart, a global reduction in the total number of CRHs and an increase in the size of CRHs. Furthermore, CTCF loss leads to a higher percentage of CRHs that cross TAD boundaries. These results provide additional evidence to support the importance of CTCF in forming the regulatory networks necessary for gene regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信