{"title":"多谷氨酰胺疾病的挑战:从功能失调的神经元回路到神经元特异性CAG重复不稳定性。","authors":"Roxana Deleanu","doi":"10.3390/ijms26199755","DOIUrl":null,"url":null,"abstract":"<p><p>Several genetic diseases affecting the human nervous system are incurable and insufficiently understood. Among them, nine rare diseases form the polyglutamine (polyQ) family: Huntington's disease (HD), spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17, dentatorubral pallidoluysian atrophy, and spinal and bulbar muscular atrophy. In most patients, these diseases progress over decades to cause severe movement incoordination and neurodegeneration. Although their inherited genes with tandem-repeat elongations and the encoded polyQ-containing proteins have been extensively studied, the neuronal-type-specific pathologies and their long pre-symptomatic latency await further investigations. However, recent advances in detecting the single-nucleus transcriptome, alongside the length of tandem repeats in HD post-mortem brains, have enabled the identification of very high CAG repeat sizes that trigger transcriptional dysregulation and cell death in specific projection neurons. One challenge is to better understand the complexity of movement coordination circuits, including the basal ganglia and cerebellum neurons, which are most vulnerable to the high CAG expansion in each disease. Another challenge is to detect dynamic changes in CAG repeat length and their effects in vulnerable neurons at single-cell resolution. This will offer a platform for identifying pathological events in vulnerable long projection neurons and developing targeted therapies for all tandem-repeat expansions affecting the CNS projection neurons.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524450/pdf/","citationCount":"0","resultStr":"{\"title\":\"Challenges in Polyglutamine Diseases: From Dysfunctional Neuronal Circuitries to Neuron-Specific CAG Repeat Instability.\",\"authors\":\"Roxana Deleanu\",\"doi\":\"10.3390/ijms26199755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several genetic diseases affecting the human nervous system are incurable and insufficiently understood. Among them, nine rare diseases form the polyglutamine (polyQ) family: Huntington's disease (HD), spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17, dentatorubral pallidoluysian atrophy, and spinal and bulbar muscular atrophy. In most patients, these diseases progress over decades to cause severe movement incoordination and neurodegeneration. Although their inherited genes with tandem-repeat elongations and the encoded polyQ-containing proteins have been extensively studied, the neuronal-type-specific pathologies and their long pre-symptomatic latency await further investigations. However, recent advances in detecting the single-nucleus transcriptome, alongside the length of tandem repeats in HD post-mortem brains, have enabled the identification of very high CAG repeat sizes that trigger transcriptional dysregulation and cell death in specific projection neurons. One challenge is to better understand the complexity of movement coordination circuits, including the basal ganglia and cerebellum neurons, which are most vulnerable to the high CAG expansion in each disease. Another challenge is to detect dynamic changes in CAG repeat length and their effects in vulnerable neurons at single-cell resolution. This will offer a platform for identifying pathological events in vulnerable long projection neurons and developing targeted therapies for all tandem-repeat expansions affecting the CNS projection neurons.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"26 19\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524450/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms26199755\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199755","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Challenges in Polyglutamine Diseases: From Dysfunctional Neuronal Circuitries to Neuron-Specific CAG Repeat Instability.
Several genetic diseases affecting the human nervous system are incurable and insufficiently understood. Among them, nine rare diseases form the polyglutamine (polyQ) family: Huntington's disease (HD), spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17, dentatorubral pallidoluysian atrophy, and spinal and bulbar muscular atrophy. In most patients, these diseases progress over decades to cause severe movement incoordination and neurodegeneration. Although their inherited genes with tandem-repeat elongations and the encoded polyQ-containing proteins have been extensively studied, the neuronal-type-specific pathologies and their long pre-symptomatic latency await further investigations. However, recent advances in detecting the single-nucleus transcriptome, alongside the length of tandem repeats in HD post-mortem brains, have enabled the identification of very high CAG repeat sizes that trigger transcriptional dysregulation and cell death in specific projection neurons. One challenge is to better understand the complexity of movement coordination circuits, including the basal ganglia and cerebellum neurons, which are most vulnerable to the high CAG expansion in each disease. Another challenge is to detect dynamic changes in CAG repeat length and their effects in vulnerable neurons at single-cell resolution. This will offer a platform for identifying pathological events in vulnerable long projection neurons and developing targeted therapies for all tandem-repeat expansions affecting the CNS projection neurons.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).