利用纳米纤维素改善聚(3-羟基丁酸酯)性能在生物医学中的应用:热、力学和生物学研究。

IF 4.9 2区 生物学
Karolina Maternia-Dudzik, Łukasz Ożóg, Zuzanna Bober, Rafał Oliwa, Mariusz Oleksy, Angelika Kamizela, Agnieszka Szyszkowska, Katarzyna Rafińska, Weronika Gonciarz, Kamil Gancarczyk, Anna Czerniecka-Kubicka
{"title":"利用纳米纤维素改善聚(3-羟基丁酸酯)性能在生物医学中的应用:热、力学和生物学研究。","authors":"Karolina Maternia-Dudzik, Łukasz Ożóg, Zuzanna Bober, Rafał Oliwa, Mariusz Oleksy, Angelika Kamizela, Agnieszka Szyszkowska, Katarzyna Rafińska, Weronika Gonciarz, Kamil Gancarczyk, Anna Czerniecka-Kubicka","doi":"10.3390/ijms26199795","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(3-hydroxybutyrate), P3HB, is a biodegradable polymer produced and stored by different bacterial strains, including <i>Ralstonia eutropha H16.</i> P3HB was used to prepare biocompatible composites modified by nanocellulose. This study aimed to assess selected thermal, mechanical, and biological properties of the obtained nanobiocomposites. Thermal properties, as determined by differential scanning calorimetry measurements, were established. The crystallinity of nanocomposites and polymeric matrix was investigated using DSC analyses. The morphology of the nanocomposites was evaluated using scanning electron microscopy. The Food and Drug Administration and the European Medicines Agency confirmed the immunosafety of the tested nanocomposites and noted they had either no or very low levels of endotoxin contamination. Some mechanical properties of the investigated materials were also measured and are presented here. It was estimated that the addition of 1% by mass of nanocrystalline cellulose to P3HB causes the greatest improvement in the plasticization of the material, characterised by the best processing and utility properties. The processing window of nanobiocomposites was extended by approximately 25 °C in reference to the unfilled poly(3-hydroxybutyrate). Mechanical and thermal tests revealed that the most desirable properties oscillate around the addition of 0.5% and 1% nanocrystalline cellulose by mass in the nanobiocomposites. Biological studies on implant applications have shown that the addition of only 0.5% nanofiller to a nanobiocomposite can be of key importance.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12525514/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving Poly(3-Hydroxybutyrate) Properties Using Nanocellulose in Biomedical Applications: Thermal, Mechanical and Biological Studies.\",\"authors\":\"Karolina Maternia-Dudzik, Łukasz Ożóg, Zuzanna Bober, Rafał Oliwa, Mariusz Oleksy, Angelika Kamizela, Agnieszka Szyszkowska, Katarzyna Rafińska, Weronika Gonciarz, Kamil Gancarczyk, Anna Czerniecka-Kubicka\",\"doi\":\"10.3390/ijms26199795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poly(3-hydroxybutyrate), P3HB, is a biodegradable polymer produced and stored by different bacterial strains, including <i>Ralstonia eutropha H16.</i> P3HB was used to prepare biocompatible composites modified by nanocellulose. This study aimed to assess selected thermal, mechanical, and biological properties of the obtained nanobiocomposites. Thermal properties, as determined by differential scanning calorimetry measurements, were established. The crystallinity of nanocomposites and polymeric matrix was investigated using DSC analyses. The morphology of the nanocomposites was evaluated using scanning electron microscopy. The Food and Drug Administration and the European Medicines Agency confirmed the immunosafety of the tested nanocomposites and noted they had either no or very low levels of endotoxin contamination. Some mechanical properties of the investigated materials were also measured and are presented here. It was estimated that the addition of 1% by mass of nanocrystalline cellulose to P3HB causes the greatest improvement in the plasticization of the material, characterised by the best processing and utility properties. The processing window of nanobiocomposites was extended by approximately 25 °C in reference to the unfilled poly(3-hydroxybutyrate). Mechanical and thermal tests revealed that the most desirable properties oscillate around the addition of 0.5% and 1% nanocrystalline cellulose by mass in the nanobiocomposites. Biological studies on implant applications have shown that the addition of only 0.5% nanofiller to a nanobiocomposite can be of key importance.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"26 19\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12525514/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms26199795\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199795","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚(3-羟基丁酸酯),P3HB,是一种可生物降解的聚合物,由不同的菌株生产和储存,包括Ralstonia eutropha H16。利用P3HB制备了纳米纤维素改性的生物相容性复合材料。本研究旨在评估所获得的纳米生物复合材料的热、力学和生物学性能。通过差示扫描量热法测量确定了热性能。采用DSC分析研究了纳米复合材料和聚合物基体的结晶度。利用扫描电镜对纳米复合材料的形貌进行了表征。美国食品和药物管理局和欧洲药品管理局证实了测试的纳米复合材料的免疫安全性,并指出它们没有或非常低水平的内毒素污染。本文还测量了所研究材料的一些力学性能。据估计,在P3HB中添加1%质量的纳米晶纤维素,可以最大程度地改善材料的塑化,其特点是具有最佳的加工和实用性能。相对于未填充的聚(3-羟基丁酸酯),纳米生物复合材料的加工窗口延长了约25°C。机械和热测试表明,在纳米生物复合材料中添加0.5%和1%的纳米晶纤维素时,最理想的性能波动。关于植入物应用的生物学研究表明,在纳米生物复合材料中添加0.5%的纳米填料是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Poly(3-Hydroxybutyrate) Properties Using Nanocellulose in Biomedical Applications: Thermal, Mechanical and Biological Studies.

Poly(3-hydroxybutyrate), P3HB, is a biodegradable polymer produced and stored by different bacterial strains, including Ralstonia eutropha H16. P3HB was used to prepare biocompatible composites modified by nanocellulose. This study aimed to assess selected thermal, mechanical, and biological properties of the obtained nanobiocomposites. Thermal properties, as determined by differential scanning calorimetry measurements, were established. The crystallinity of nanocomposites and polymeric matrix was investigated using DSC analyses. The morphology of the nanocomposites was evaluated using scanning electron microscopy. The Food and Drug Administration and the European Medicines Agency confirmed the immunosafety of the tested nanocomposites and noted they had either no or very low levels of endotoxin contamination. Some mechanical properties of the investigated materials were also measured and are presented here. It was estimated that the addition of 1% by mass of nanocrystalline cellulose to P3HB causes the greatest improvement in the plasticization of the material, characterised by the best processing and utility properties. The processing window of nanobiocomposites was extended by approximately 25 °C in reference to the unfilled poly(3-hydroxybutyrate). Mechanical and thermal tests revealed that the most desirable properties oscillate around the addition of 0.5% and 1% nanocrystalline cellulose by mass in the nanobiocomposites. Biological studies on implant applications have shown that the addition of only 0.5% nanofiller to a nanobiocomposite can be of key importance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信