cap - lamp2b修饰的干细胞胞外囊泡与靶向ADAMTS4的CRISPR-Cas9杂交逆转il -1β诱导的软骨细胞聚集蛋白丢失

IF 4.9 2区 生物学
Kun-Chi Wu, Yu-Hsun Chang, Raymond Yuh-Shyan Chiang, Dah-Ching Ding
{"title":"cap - lamp2b修饰的干细胞胞外囊泡与靶向ADAMTS4的CRISPR-Cas9杂交逆转il -1β诱导的软骨细胞聚集蛋白丢失","authors":"Kun-Chi Wu, Yu-Hsun Chang, Raymond Yuh-Shyan Chiang, Dah-Ching Ding","doi":"10.3390/ijms26199812","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) from mesenchymal stem cells hold therapeutic promise for inflammatory and degenerative diseases; however, limited delivery and targeting capabilities hinder their clinical use. In this study, we sought to enhance the anti-inflammatory and chondroprotective effects of EVs through CAP-LAMP2b (chondrocyte affinity peptide fused to an EV membrane protein) engineering and <i>ADAMTS4</i> gene editing hybrid vesicle formation. Human umbilical cord MSCs (hUCMSCs) were characterized via morphology, immunophenotyping, and trilineage differentiation. EVs from control and CAP-LAMP2b-transfected hUCMSCs were fused with liposomes carrying CRISPR-Cas9 ADAMTS4 gRNA. DiI-labeled EV uptake was assessed via fluorescence imaging. CAP-LAMP2b was expressed in hUCMSCs and their EVs. EVs exhibited the expected size (~120 nm), morphology, and exosomal markers (CD9, CD63, CD81, HSP70). CAP-modified hybrid EVs significantly enhanced chondrocyte uptake compared to control EVs and liposomes. IL-1β increased ADAMTS4 expression, whereas CAP-LAMP2b-ADAMTS4 EVs, particularly clone SG3, reversed these effects by reducing ADAMTS4 and restoring aggrecan. Western blotting confirmed suppressed ADAMTS4 and elevated aggrecan protein. CAP-LAMP2b-ADAMTS4 EVs, therefore, showed superior uptake and therapeutic efficacy in inflamed chondrocytes, attenuating inflammatory gene expression and preserving matrix integrity. These results support engineered EVs as a promising cell-free approach for cartilage repair and osteoarthritis treatment.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12525490/pdf/","citationCount":"0","resultStr":"{\"title\":\"CAP-LAMP2b-Modified Stem Cells' Extracellular Vesicles Hybrid with CRISPR-Cas9 Targeting ADAMTS4 to Reverse IL-1β-Induced Aggrecan Loss in Chondrocytes.\",\"authors\":\"Kun-Chi Wu, Yu-Hsun Chang, Raymond Yuh-Shyan Chiang, Dah-Ching Ding\",\"doi\":\"10.3390/ijms26199812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular vesicles (EVs) from mesenchymal stem cells hold therapeutic promise for inflammatory and degenerative diseases; however, limited delivery and targeting capabilities hinder their clinical use. In this study, we sought to enhance the anti-inflammatory and chondroprotective effects of EVs through CAP-LAMP2b (chondrocyte affinity peptide fused to an EV membrane protein) engineering and <i>ADAMTS4</i> gene editing hybrid vesicle formation. Human umbilical cord MSCs (hUCMSCs) were characterized via morphology, immunophenotyping, and trilineage differentiation. EVs from control and CAP-LAMP2b-transfected hUCMSCs were fused with liposomes carrying CRISPR-Cas9 ADAMTS4 gRNA. DiI-labeled EV uptake was assessed via fluorescence imaging. CAP-LAMP2b was expressed in hUCMSCs and their EVs. EVs exhibited the expected size (~120 nm), morphology, and exosomal markers (CD9, CD63, CD81, HSP70). CAP-modified hybrid EVs significantly enhanced chondrocyte uptake compared to control EVs and liposomes. IL-1β increased ADAMTS4 expression, whereas CAP-LAMP2b-ADAMTS4 EVs, particularly clone SG3, reversed these effects by reducing ADAMTS4 and restoring aggrecan. Western blotting confirmed suppressed ADAMTS4 and elevated aggrecan protein. CAP-LAMP2b-ADAMTS4 EVs, therefore, showed superior uptake and therapeutic efficacy in inflamed chondrocytes, attenuating inflammatory gene expression and preserving matrix integrity. These results support engineered EVs as a promising cell-free approach for cartilage repair and osteoarthritis treatment.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"26 19\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12525490/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms26199812\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199812","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

来自间充质干细胞的细胞外囊泡(EVs)有望治疗炎症和退行性疾病;然而,有限的递送和靶向能力阻碍了它们的临床应用。在这项研究中,我们试图通过CAP-LAMP2b(软骨细胞亲和肽融合到EV膜蛋白)工程和ADAMTS4基因编辑杂交囊泡形成来增强EV的抗炎和软骨保护作用。人类脐带间充质干细胞(hUCMSCs)通过形态学、免疫表型和三岁分化进行表征。对照组和cap - lamp2b转染的hUCMSCs的ev与携带CRISPR-Cas9 ADAMTS4 gRNA的脂质体融合。通过荧光成像评估dii标记的EV摄取。CAP-LAMP2b在hUCMSCs及其ev中表达。EVs表现出预期的大小(~ 120nm)、形态和外泌体标记(CD9、CD63、CD81、HSP70)。与对照ev和脂质体相比,cap修饰的混合ev显著增强了软骨细胞摄取。IL-1β增加ADAMTS4的表达,而CAP-LAMP2b-ADAMTS4 ev,特别是克隆SG3,通过减少ADAMTS4和恢复聚集蛋白来逆转这些作用。Western blotting证实ADAMTS4抑制和聚集蛋白升高。因此,CAP-LAMP2b-ADAMTS4 ev在炎症软骨细胞中表现出优越的摄取和治疗效果,可以减轻炎症基因表达并保持基质完整性。这些结果支持工程化ev作为软骨修复和骨关节炎治疗的一种有前途的无细胞方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CAP-LAMP2b-Modified Stem Cells' Extracellular Vesicles Hybrid with CRISPR-Cas9 Targeting ADAMTS4 to Reverse IL-1β-Induced Aggrecan Loss in Chondrocytes.

Extracellular vesicles (EVs) from mesenchymal stem cells hold therapeutic promise for inflammatory and degenerative diseases; however, limited delivery and targeting capabilities hinder their clinical use. In this study, we sought to enhance the anti-inflammatory and chondroprotective effects of EVs through CAP-LAMP2b (chondrocyte affinity peptide fused to an EV membrane protein) engineering and ADAMTS4 gene editing hybrid vesicle formation. Human umbilical cord MSCs (hUCMSCs) were characterized via morphology, immunophenotyping, and trilineage differentiation. EVs from control and CAP-LAMP2b-transfected hUCMSCs were fused with liposomes carrying CRISPR-Cas9 ADAMTS4 gRNA. DiI-labeled EV uptake was assessed via fluorescence imaging. CAP-LAMP2b was expressed in hUCMSCs and their EVs. EVs exhibited the expected size (~120 nm), morphology, and exosomal markers (CD9, CD63, CD81, HSP70). CAP-modified hybrid EVs significantly enhanced chondrocyte uptake compared to control EVs and liposomes. IL-1β increased ADAMTS4 expression, whereas CAP-LAMP2b-ADAMTS4 EVs, particularly clone SG3, reversed these effects by reducing ADAMTS4 and restoring aggrecan. Western blotting confirmed suppressed ADAMTS4 and elevated aggrecan protein. CAP-LAMP2b-ADAMTS4 EVs, therefore, showed superior uptake and therapeutic efficacy in inflamed chondrocytes, attenuating inflammatory gene expression and preserving matrix integrity. These results support engineered EVs as a promising cell-free approach for cartilage repair and osteoarthritis treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信