{"title":"基于变压器模型和可解释的人工智能的CT扫描脑卒中分类。","authors":"Shomukh Qari, Maha A Thafar","doi":"10.3390/diagnostics15192486","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background & Objective:</b> Stroke remains a leading cause of mortality and long-term disability worldwide, demanding rapid and accurate diagnosis to improve patient outcomes. Computed tomography (CT) scans are widely used in emergency settings due to their speed, availability, and cost-effectiveness. This study proposes an artificial intelligence (AI)-based framework for multiclass stroke classification (ischemic, hemorrhagic, and no stroke) using CT scan images from the Ministry of Health of the Republic of Turkey. <b>Methods:</b> We adopted MaxViT, a state-of-the-art Vision Transformer (ViT)-based architecture, as the primary deep learning model for stroke classification. Additional transformer variants, including Vision Transformer (ViT), Transformer-in-Transformer (TNT), and ConvNeXt, were evaluated for comparison. To improve model generalization and handle class imbalance, classical data augmentation techniques were applied. Furthermore, explainable AI (XAI) was integrated using Grad-CAM++ to provide visual insights into model decisions. <b>Results:</b> The MaxViT model with augmentation achieved the highest performance, reaching an accuracy and F1-score of 98.00%, outperforming the baseline Vision Transformer and other evaluated models. Grad-CAM++ visualizations confirmed that the proposed framework effectively identified stroke-related regions, enhancing transparency and clinical trust. <b>Conclusions:</b> This research contributes to the development of a trustworthy AI-assisted diagnostic tool for stroke, facilitating its integration into clinical practice and improving access to timely and optimal stroke diagnosis in emergency departments.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 19","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12523697/pdf/","citationCount":"0","resultStr":"{\"title\":\"Brain Stroke Classification Using CT Scans with Transformer-Based Models and Explainable AI.\",\"authors\":\"Shomukh Qari, Maha A Thafar\",\"doi\":\"10.3390/diagnostics15192486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background & Objective:</b> Stroke remains a leading cause of mortality and long-term disability worldwide, demanding rapid and accurate diagnosis to improve patient outcomes. Computed tomography (CT) scans are widely used in emergency settings due to their speed, availability, and cost-effectiveness. This study proposes an artificial intelligence (AI)-based framework for multiclass stroke classification (ischemic, hemorrhagic, and no stroke) using CT scan images from the Ministry of Health of the Republic of Turkey. <b>Methods:</b> We adopted MaxViT, a state-of-the-art Vision Transformer (ViT)-based architecture, as the primary deep learning model for stroke classification. Additional transformer variants, including Vision Transformer (ViT), Transformer-in-Transformer (TNT), and ConvNeXt, were evaluated for comparison. To improve model generalization and handle class imbalance, classical data augmentation techniques were applied. Furthermore, explainable AI (XAI) was integrated using Grad-CAM++ to provide visual insights into model decisions. <b>Results:</b> The MaxViT model with augmentation achieved the highest performance, reaching an accuracy and F1-score of 98.00%, outperforming the baseline Vision Transformer and other evaluated models. Grad-CAM++ visualizations confirmed that the proposed framework effectively identified stroke-related regions, enhancing transparency and clinical trust. <b>Conclusions:</b> This research contributes to the development of a trustworthy AI-assisted diagnostic tool for stroke, facilitating its integration into clinical practice and improving access to timely and optimal stroke diagnosis in emergency departments.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 19\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12523697/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15192486\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15192486","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Brain Stroke Classification Using CT Scans with Transformer-Based Models and Explainable AI.
Background & Objective: Stroke remains a leading cause of mortality and long-term disability worldwide, demanding rapid and accurate diagnosis to improve patient outcomes. Computed tomography (CT) scans are widely used in emergency settings due to their speed, availability, and cost-effectiveness. This study proposes an artificial intelligence (AI)-based framework for multiclass stroke classification (ischemic, hemorrhagic, and no stroke) using CT scan images from the Ministry of Health of the Republic of Turkey. Methods: We adopted MaxViT, a state-of-the-art Vision Transformer (ViT)-based architecture, as the primary deep learning model for stroke classification. Additional transformer variants, including Vision Transformer (ViT), Transformer-in-Transformer (TNT), and ConvNeXt, were evaluated for comparison. To improve model generalization and handle class imbalance, classical data augmentation techniques were applied. Furthermore, explainable AI (XAI) was integrated using Grad-CAM++ to provide visual insights into model decisions. Results: The MaxViT model with augmentation achieved the highest performance, reaching an accuracy and F1-score of 98.00%, outperforming the baseline Vision Transformer and other evaluated models. Grad-CAM++ visualizations confirmed that the proposed framework effectively identified stroke-related regions, enhancing transparency and clinical trust. Conclusions: This research contributes to the development of a trustworthy AI-assisted diagnostic tool for stroke, facilitating its integration into clinical practice and improving access to timely and optimal stroke diagnosis in emergency departments.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.