Omer Esmez, Gulnihal Deniz, Furkan Bilek, Murat Gurger, Prabal Datta Barua, Sengul Dogan, Mehmet Baygin, Turker Tuncer
{"title":"TurkerNeXtV2:一种用于膝关节骨关节炎压力图像分类的创新CNN模型。","authors":"Omer Esmez, Gulnihal Deniz, Furkan Bilek, Murat Gurger, Prabal Datta Barua, Sengul Dogan, Mehmet Baygin, Turker Tuncer","doi":"10.3390/diagnostics15192478","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Lightweight CNNs for medical imaging remain limited. We propose TurkerNeXtV2, a compact CNN that introduces two new blocks: a pooling-based attention with an inverted bottleneck (TNV2) and a hybrid downsampling module. These blocks improve stability and efficiency. The aim is to achieve transformer-level effectiveness while keeping the simplicity, low computational cost, and deployability of CNNs. <b>Methods:</b> The model was first pretrained on the Stable ImageNet-1k benchmark and then fine-tuned on a collected plantar-pressure OA dataset. We also evaluated the model on a public blood-cell image dataset. Performance was measured by accuracy, precision, recall, and F1-score. Inference time (images per second) was recorded on an RTX 5080 GPU. Grad-CAM was used for qualitative explainability. <b>Results:</b> During pretraining on Stable ImageNet-1k, the model reached a validation accuracy of 87.77%. On the OA test set, the model achieved 93.40% accuracy (95% CI: 91.3-95.2%) with balanced precision and recall above 90%. On the blood-cell dataset, the test accuracy was 98.52%. The average inference time was 0.0078 s per image (≈128.8 images/s), which is comparable to strong CNN baselines and faster than the transformer baselines tested under the same settings. <b>Conclusions:</b> TurkerNeXtV2 delivers high accuracy with low computational cost. The pooling-based attention (TNV2) and the hybrid downsampling enable a lightweight yet effective design. The model is suitable for real-time and clinical use. Future work will include multi-center validation and broader tests across imaging modalities.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 19","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12523376/pdf/","citationCount":"0","resultStr":"{\"title\":\"TurkerNeXtV2: An Innovative CNN Model for Knee Osteoarthritis Pressure Image Classification.\",\"authors\":\"Omer Esmez, Gulnihal Deniz, Furkan Bilek, Murat Gurger, Prabal Datta Barua, Sengul Dogan, Mehmet Baygin, Turker Tuncer\",\"doi\":\"10.3390/diagnostics15192478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> Lightweight CNNs for medical imaging remain limited. We propose TurkerNeXtV2, a compact CNN that introduces two new blocks: a pooling-based attention with an inverted bottleneck (TNV2) and a hybrid downsampling module. These blocks improve stability and efficiency. The aim is to achieve transformer-level effectiveness while keeping the simplicity, low computational cost, and deployability of CNNs. <b>Methods:</b> The model was first pretrained on the Stable ImageNet-1k benchmark and then fine-tuned on a collected plantar-pressure OA dataset. We also evaluated the model on a public blood-cell image dataset. Performance was measured by accuracy, precision, recall, and F1-score. Inference time (images per second) was recorded on an RTX 5080 GPU. Grad-CAM was used for qualitative explainability. <b>Results:</b> During pretraining on Stable ImageNet-1k, the model reached a validation accuracy of 87.77%. On the OA test set, the model achieved 93.40% accuracy (95% CI: 91.3-95.2%) with balanced precision and recall above 90%. On the blood-cell dataset, the test accuracy was 98.52%. The average inference time was 0.0078 s per image (≈128.8 images/s), which is comparable to strong CNN baselines and faster than the transformer baselines tested under the same settings. <b>Conclusions:</b> TurkerNeXtV2 delivers high accuracy with low computational cost. The pooling-based attention (TNV2) and the hybrid downsampling enable a lightweight yet effective design. The model is suitable for real-time and clinical use. Future work will include multi-center validation and broader tests across imaging modalities.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 19\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12523376/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15192478\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15192478","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
TurkerNeXtV2: An Innovative CNN Model for Knee Osteoarthritis Pressure Image Classification.
Background/Objectives: Lightweight CNNs for medical imaging remain limited. We propose TurkerNeXtV2, a compact CNN that introduces two new blocks: a pooling-based attention with an inverted bottleneck (TNV2) and a hybrid downsampling module. These blocks improve stability and efficiency. The aim is to achieve transformer-level effectiveness while keeping the simplicity, low computational cost, and deployability of CNNs. Methods: The model was first pretrained on the Stable ImageNet-1k benchmark and then fine-tuned on a collected plantar-pressure OA dataset. We also evaluated the model on a public blood-cell image dataset. Performance was measured by accuracy, precision, recall, and F1-score. Inference time (images per second) was recorded on an RTX 5080 GPU. Grad-CAM was used for qualitative explainability. Results: During pretraining on Stable ImageNet-1k, the model reached a validation accuracy of 87.77%. On the OA test set, the model achieved 93.40% accuracy (95% CI: 91.3-95.2%) with balanced precision and recall above 90%. On the blood-cell dataset, the test accuracy was 98.52%. The average inference time was 0.0078 s per image (≈128.8 images/s), which is comparable to strong CNN baselines and faster than the transformer baselines tested under the same settings. Conclusions: TurkerNeXtV2 delivers high accuracy with low computational cost. The pooling-based attention (TNV2) and the hybrid downsampling enable a lightweight yet effective design. The model is suitable for real-time and clinical use. Future work will include multi-center validation and broader tests across imaging modalities.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.