尿路感染诊断的新兴技术:分子检测和耐药性分析的进展。

IF 3.3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Baiken Baimakhanova, Amankeldi Sadanov, Vladimir Berezin, Gul Baimakhanova, Lyudmila Trenozhnikova, Saltanat Orasymbet, Gulnaz Seitimova, Sundetgali Kalmakhanov, Gulzakira Xetayeva, Zhanserik Shynykul, Aizat Seidakhmetova, Aknur Turgumbayeva
{"title":"尿路感染诊断的新兴技术:分子检测和耐药性分析的进展。","authors":"Baiken Baimakhanova, Amankeldi Sadanov, Vladimir Berezin, Gul Baimakhanova, Lyudmila Trenozhnikova, Saltanat Orasymbet, Gulnaz Seitimova, Sundetgali Kalmakhanov, Gulzakira Xetayeva, Zhanserik Shynykul, Aizat Seidakhmetova, Aknur Turgumbayeva","doi":"10.3390/diagnostics15192469","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Urinary tract infections (UTIs) represent a considerable challenge within the field of clinical medicine, as they are responsible for significant morbidity and intensify the operational pressures encountered by healthcare systems. Conventional diagnostic approaches, which include symptom evaluation, dipstick urinalysis, and standard urine culture, often demonstrate inadequacies in identifying atypical clinical manifestations, infections with low bacterial counts, or pathogens that show growth difficulties under typical laboratory conditions. These limitations undermine diagnostic accuracy and hinder timely therapeutic measures. <b>Methods</b>: The present manuscript is a systematic review conducted in accordance with PRISMA guidelines. A structured search was performed in PubMed, Scopus, and Google Scholar, yielding 573 records, of which 107 studies were included for qualitative synthesis. The primary aim of this systematic review is to evaluate both conventional and emerging diagnostic methods for UTIs, with specific objectives of assessing their clinical applicability, limitations, and potential to improve patient outcomes. <b>Results</b>: Recent progress in diagnostic technologies offers promising alternatives. Molecular-based assays, such as multiplex polymerase chain reaction, matrix-assisted laser desorption ionization mass spectrometry, and next-generation sequencing, have substantially improved both the precision and efficiency of pathogen identification. Furthermore, contemporary techniques for evaluating antimicrobial susceptibility, including microfluidic systems and real-time phenotypic resistance assays, enable clinicians to execute targeted therapeutic strategies with enhanced efficacy. Results of this synthesis indicate that while conventional diagnostics remain the cornerstone for uncomplicated cases, innovative molecular and phenotypic approaches demonstrate superior performance in detecting low-count bacteriuria, atypical pathogens, and resistance determinants, particularly in complicated and recurrent infections. These innovations support antimicrobial stewardship by reducing dependence on empirical antibiotic treatment and lessening the risk of resistance emergence. <b>Conclusions</b>: Nonetheless, the incorporation of these technologies into clinical practice requires careful consideration of implementation costs, standardization protocols, and the necessary training of healthcare professionals. In conclusion, this systematic review highlights that emerging molecular diagnostics and resistance-profiling tools offer substantial promise in complementing or enhancing traditional methods, but their widespread adoption will depend on robust validation, cost-effectiveness, and integration into clinical workflows.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 19","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524013/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emerging Technologies for the Diagnosis of Urinary Tract Infections: Advances in Molecular Detection and Resistance Profiling.\",\"authors\":\"Baiken Baimakhanova, Amankeldi Sadanov, Vladimir Berezin, Gul Baimakhanova, Lyudmila Trenozhnikova, Saltanat Orasymbet, Gulnaz Seitimova, Sundetgali Kalmakhanov, Gulzakira Xetayeva, Zhanserik Shynykul, Aizat Seidakhmetova, Aknur Turgumbayeva\",\"doi\":\"10.3390/diagnostics15192469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: Urinary tract infections (UTIs) represent a considerable challenge within the field of clinical medicine, as they are responsible for significant morbidity and intensify the operational pressures encountered by healthcare systems. Conventional diagnostic approaches, which include symptom evaluation, dipstick urinalysis, and standard urine culture, often demonstrate inadequacies in identifying atypical clinical manifestations, infections with low bacterial counts, or pathogens that show growth difficulties under typical laboratory conditions. These limitations undermine diagnostic accuracy and hinder timely therapeutic measures. <b>Methods</b>: The present manuscript is a systematic review conducted in accordance with PRISMA guidelines. A structured search was performed in PubMed, Scopus, and Google Scholar, yielding 573 records, of which 107 studies were included for qualitative synthesis. The primary aim of this systematic review is to evaluate both conventional and emerging diagnostic methods for UTIs, with specific objectives of assessing their clinical applicability, limitations, and potential to improve patient outcomes. <b>Results</b>: Recent progress in diagnostic technologies offers promising alternatives. Molecular-based assays, such as multiplex polymerase chain reaction, matrix-assisted laser desorption ionization mass spectrometry, and next-generation sequencing, have substantially improved both the precision and efficiency of pathogen identification. Furthermore, contemporary techniques for evaluating antimicrobial susceptibility, including microfluidic systems and real-time phenotypic resistance assays, enable clinicians to execute targeted therapeutic strategies with enhanced efficacy. Results of this synthesis indicate that while conventional diagnostics remain the cornerstone for uncomplicated cases, innovative molecular and phenotypic approaches demonstrate superior performance in detecting low-count bacteriuria, atypical pathogens, and resistance determinants, particularly in complicated and recurrent infections. These innovations support antimicrobial stewardship by reducing dependence on empirical antibiotic treatment and lessening the risk of resistance emergence. <b>Conclusions</b>: Nonetheless, the incorporation of these technologies into clinical practice requires careful consideration of implementation costs, standardization protocols, and the necessary training of healthcare professionals. In conclusion, this systematic review highlights that emerging molecular diagnostics and resistance-profiling tools offer substantial promise in complementing or enhancing traditional methods, but their widespread adoption will depend on robust validation, cost-effectiveness, and integration into clinical workflows.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 19\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524013/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15192469\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15192469","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

背景/目的:尿路感染(uti)在临床医学领域是一个相当大的挑战,因为它们是造成显著发病率的原因,并加剧了卫生保健系统遇到的操作压力。传统的诊断方法,包括症状评估、尿试纸分析和标准尿培养,通常在识别非典型临床表现、细菌计数低的感染或在典型实验室条件下表现出生长困难的病原体方面表现不足。这些限制削弱了诊断的准确性,阻碍了及时的治疗措施。方法:本文是根据PRISMA指南进行的系统综述。在PubMed、Scopus和b谷歌Scholar中进行结构化检索,得到573条记录,其中107项研究被纳入定性合成。本系统综述的主要目的是评估尿路感染的传统和新兴诊断方法,具体目标是评估其临床适用性、局限性和改善患者预后的潜力。结果:诊断技术的最新进展提供了有希望的替代方法。基于分子的分析,如多重聚合酶链反应、基质辅助激光解吸电离质谱和下一代测序,大大提高了病原体鉴定的精度和效率。此外,当代评估抗菌素敏感性的技术,包括微流体系统和实时表型耐药测定,使临床医生能够执行有针对性的治疗策略,提高疗效。这一综合结果表明,虽然传统的诊断方法仍然是简单病例的基础,但创新的分子和表型方法在检测低计数菌尿、非典型病原体和耐药决定因素方面表现优异,特别是在复杂和复发性感染中。这些创新通过减少对经验性抗生素治疗的依赖和减少出现耐药性的风险来支持抗菌素管理。结论:尽管如此,将这些技术纳入临床实践需要仔细考虑实施成本、标准化协议和对医疗保健专业人员的必要培训。总之,这篇系统综述强调了新兴的分子诊断和耐药性分析工具在补充或增强传统方法方面提供了巨大的希望,但它们的广泛采用将取决于强有力的验证、成本效益和与临床工作流程的整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Emerging Technologies for the Diagnosis of Urinary Tract Infections: Advances in Molecular Detection and Resistance Profiling.

Emerging Technologies for the Diagnosis of Urinary Tract Infections: Advances in Molecular Detection and Resistance Profiling.

Emerging Technologies for the Diagnosis of Urinary Tract Infections: Advances in Molecular Detection and Resistance Profiling.

Background/Objectives: Urinary tract infections (UTIs) represent a considerable challenge within the field of clinical medicine, as they are responsible for significant morbidity and intensify the operational pressures encountered by healthcare systems. Conventional diagnostic approaches, which include symptom evaluation, dipstick urinalysis, and standard urine culture, often demonstrate inadequacies in identifying atypical clinical manifestations, infections with low bacterial counts, or pathogens that show growth difficulties under typical laboratory conditions. These limitations undermine diagnostic accuracy and hinder timely therapeutic measures. Methods: The present manuscript is a systematic review conducted in accordance with PRISMA guidelines. A structured search was performed in PubMed, Scopus, and Google Scholar, yielding 573 records, of which 107 studies were included for qualitative synthesis. The primary aim of this systematic review is to evaluate both conventional and emerging diagnostic methods for UTIs, with specific objectives of assessing their clinical applicability, limitations, and potential to improve patient outcomes. Results: Recent progress in diagnostic technologies offers promising alternatives. Molecular-based assays, such as multiplex polymerase chain reaction, matrix-assisted laser desorption ionization mass spectrometry, and next-generation sequencing, have substantially improved both the precision and efficiency of pathogen identification. Furthermore, contemporary techniques for evaluating antimicrobial susceptibility, including microfluidic systems and real-time phenotypic resistance assays, enable clinicians to execute targeted therapeutic strategies with enhanced efficacy. Results of this synthesis indicate that while conventional diagnostics remain the cornerstone for uncomplicated cases, innovative molecular and phenotypic approaches demonstrate superior performance in detecting low-count bacteriuria, atypical pathogens, and resistance determinants, particularly in complicated and recurrent infections. These innovations support antimicrobial stewardship by reducing dependence on empirical antibiotic treatment and lessening the risk of resistance emergence. Conclusions: Nonetheless, the incorporation of these technologies into clinical practice requires careful consideration of implementation costs, standardization protocols, and the necessary training of healthcare professionals. In conclusion, this systematic review highlights that emerging molecular diagnostics and resistance-profiling tools offer substantial promise in complementing or enhancing traditional methods, but their widespread adoption will depend on robust validation, cost-effectiveness, and integration into clinical workflows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信