{"title":"数据受限的临床环境下稳健的半监督脑肿瘤MRI分类网络。","authors":"Subhash Chand Gupta, Vandana Bhattacharjee, Shripal Vijayvargiya, Partha Sarathi Bishnu, Raushan Oraon, Rajendra Majhi","doi":"10.3390/diagnostics15192485","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The accurate classification of brain tumor subtypes from MRI scans is critical for timely diagnosis, yet the manual annotation of large datasets remains prohibitively labor-intensive. <b>Method:</b> We present SSPLNet (Semi-Supervised Pseudo-Labeling Network), a dual-branch deep learning framework that synergizes confidence-guided iterative pseudo-labelling with deep feature fusion to enable robust MRI-based tumor classification in data-constrained clinical environments. SSPLNet integrates a custom convolutional neural network (CNN) and a pretrained ResNet50 model, trained semi-supervised using adaptive confidence thresholds (τ = 0.98 → 0.95 → 0.90) to iteratively refine pseudo-labels for unlabelled MRI scans. Feature representations from both branches are fused via a dense network, combining localized texture patterns with hierarchical deep features. <b>Results:</b> SSPLNet achieves state-of-the-art accuracy across labelled-unlabelled data splits (90:10 to 10:90), outperforming supervised baselines in extreme low-label regimes (10:90) by up to 5.34% from Custom CNN and 5.58% from ResNet50. The framework reduces annotation dependence and with 40% unlabeled data maintains 98.17% diagnostic accuracy, demonstrating its viability for scalable deployment in resource-limited healthcare settings. <b>Conclusions:</b> Statistical Evaluation and Robustness Analysis of SSPLNet Performance confirms that SSPLNet's lower error rate is not due to chance. The bootstrap results also confirm that SSPLNet's reported accuracy falls well within the 95% CI of the sampling distribution.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 19","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524090/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Robust Semi-Supervised Brain Tumor MRI Classification Network for Data-Constrained Clinical Environments.\",\"authors\":\"Subhash Chand Gupta, Vandana Bhattacharjee, Shripal Vijayvargiya, Partha Sarathi Bishnu, Raushan Oraon, Rajendra Majhi\",\"doi\":\"10.3390/diagnostics15192485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> The accurate classification of brain tumor subtypes from MRI scans is critical for timely diagnosis, yet the manual annotation of large datasets remains prohibitively labor-intensive. <b>Method:</b> We present SSPLNet (Semi-Supervised Pseudo-Labeling Network), a dual-branch deep learning framework that synergizes confidence-guided iterative pseudo-labelling with deep feature fusion to enable robust MRI-based tumor classification in data-constrained clinical environments. SSPLNet integrates a custom convolutional neural network (CNN) and a pretrained ResNet50 model, trained semi-supervised using adaptive confidence thresholds (τ = 0.98 → 0.95 → 0.90) to iteratively refine pseudo-labels for unlabelled MRI scans. Feature representations from both branches are fused via a dense network, combining localized texture patterns with hierarchical deep features. <b>Results:</b> SSPLNet achieves state-of-the-art accuracy across labelled-unlabelled data splits (90:10 to 10:90), outperforming supervised baselines in extreme low-label regimes (10:90) by up to 5.34% from Custom CNN and 5.58% from ResNet50. The framework reduces annotation dependence and with 40% unlabeled data maintains 98.17% diagnostic accuracy, demonstrating its viability for scalable deployment in resource-limited healthcare settings. <b>Conclusions:</b> Statistical Evaluation and Robustness Analysis of SSPLNet Performance confirms that SSPLNet's lower error rate is not due to chance. The bootstrap results also confirm that SSPLNet's reported accuracy falls well within the 95% CI of the sampling distribution.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 19\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524090/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15192485\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15192485","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
A Robust Semi-Supervised Brain Tumor MRI Classification Network for Data-Constrained Clinical Environments.
Background: The accurate classification of brain tumor subtypes from MRI scans is critical for timely diagnosis, yet the manual annotation of large datasets remains prohibitively labor-intensive. Method: We present SSPLNet (Semi-Supervised Pseudo-Labeling Network), a dual-branch deep learning framework that synergizes confidence-guided iterative pseudo-labelling with deep feature fusion to enable robust MRI-based tumor classification in data-constrained clinical environments. SSPLNet integrates a custom convolutional neural network (CNN) and a pretrained ResNet50 model, trained semi-supervised using adaptive confidence thresholds (τ = 0.98 → 0.95 → 0.90) to iteratively refine pseudo-labels for unlabelled MRI scans. Feature representations from both branches are fused via a dense network, combining localized texture patterns with hierarchical deep features. Results: SSPLNet achieves state-of-the-art accuracy across labelled-unlabelled data splits (90:10 to 10:90), outperforming supervised baselines in extreme low-label regimes (10:90) by up to 5.34% from Custom CNN and 5.58% from ResNet50. The framework reduces annotation dependence and with 40% unlabeled data maintains 98.17% diagnostic accuracy, demonstrating its viability for scalable deployment in resource-limited healthcare settings. Conclusions: Statistical Evaluation and Robustness Analysis of SSPLNet Performance confirms that SSPLNet's lower error rate is not due to chance. The bootstrap results also confirm that SSPLNet's reported accuracy falls well within the 95% CI of the sampling distribution.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.