{"title":"Wnt/β-Catenin通路激活通过增强肠道干细胞功能赋予鸡肠道类器官单层伏马菌素B1耐受性","authors":"Shuai Zhang, Yanan Cao, Yiyi Shan, Xueli Zhang, Liangxing Xia, Haifei Wang, Shenglong Wu, Wenbin Bao","doi":"10.3390/ani15192850","DOIUrl":null,"url":null,"abstract":"<p><p>Fumonisin B1 (FB1) is a prevalent mycotoxin in moldy grains and feeds, highly toxic to livestock and compromising product quality while threatening food safety. Poultry exhibit low susceptibility to FB1, but the underlying tolerance mechanisms remain unclear. Traditional 3D chicken intestinal organoid models cannot simulate direct interaction between the epithelial monolayer and FB1, limiting the study of FB1-chicken intestinal crosstalk. Here, we established a 2D chicken intestinal organoid monolayer model, derived from intestinal crypts of 18-day-old specific pathogen-free chicken embryos, to systematically explore poultry's resistance mechanisms against FB1. Using this model, we compared FB1-induced effects with those in a porcine intestinal epithelial cell model. Results showed that FB1 exposure did not reduce transepithelial electrical resistance, induce abnormal expression of tight junction genes, or cause significant fluctuations in inflammatory factor levels in chicken intestinal organoid monolayers. Mechanistically, FB1 enhances chicken intestinal stem cell function by activating the Wnt/β-catenin pathway, thereby promoting epithelial regeneration and renewal to increase FB1 resistance and decrease toxin sensitivity in chickens. This study reveals a strategy for enhancing FB1 tolerance in poultry by promoting intestinal stem cell function, providing a new perspective for developing mycotoxin prevention and control strategies.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 19","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12523766/pdf/","citationCount":"0","resultStr":"{\"title\":\"Wnt/β-Catenin Pathway Activation Confers Fumonisin B1 Tolerance in Chicken Intestinal Organoid Monolayers by Enhancing Intestinal Stem Cell Function.\",\"authors\":\"Shuai Zhang, Yanan Cao, Yiyi Shan, Xueli Zhang, Liangxing Xia, Haifei Wang, Shenglong Wu, Wenbin Bao\",\"doi\":\"10.3390/ani15192850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fumonisin B1 (FB1) is a prevalent mycotoxin in moldy grains and feeds, highly toxic to livestock and compromising product quality while threatening food safety. Poultry exhibit low susceptibility to FB1, but the underlying tolerance mechanisms remain unclear. Traditional 3D chicken intestinal organoid models cannot simulate direct interaction between the epithelial monolayer and FB1, limiting the study of FB1-chicken intestinal crosstalk. Here, we established a 2D chicken intestinal organoid monolayer model, derived from intestinal crypts of 18-day-old specific pathogen-free chicken embryos, to systematically explore poultry's resistance mechanisms against FB1. Using this model, we compared FB1-induced effects with those in a porcine intestinal epithelial cell model. Results showed that FB1 exposure did not reduce transepithelial electrical resistance, induce abnormal expression of tight junction genes, or cause significant fluctuations in inflammatory factor levels in chicken intestinal organoid monolayers. Mechanistically, FB1 enhances chicken intestinal stem cell function by activating the Wnt/β-catenin pathway, thereby promoting epithelial regeneration and renewal to increase FB1 resistance and decrease toxin sensitivity in chickens. This study reveals a strategy for enhancing FB1 tolerance in poultry by promoting intestinal stem cell function, providing a new perspective for developing mycotoxin prevention and control strategies.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"15 19\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12523766/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani15192850\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15192850","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Wnt/β-Catenin Pathway Activation Confers Fumonisin B1 Tolerance in Chicken Intestinal Organoid Monolayers by Enhancing Intestinal Stem Cell Function.
Fumonisin B1 (FB1) is a prevalent mycotoxin in moldy grains and feeds, highly toxic to livestock and compromising product quality while threatening food safety. Poultry exhibit low susceptibility to FB1, but the underlying tolerance mechanisms remain unclear. Traditional 3D chicken intestinal organoid models cannot simulate direct interaction between the epithelial monolayer and FB1, limiting the study of FB1-chicken intestinal crosstalk. Here, we established a 2D chicken intestinal organoid monolayer model, derived from intestinal crypts of 18-day-old specific pathogen-free chicken embryos, to systematically explore poultry's resistance mechanisms against FB1. Using this model, we compared FB1-induced effects with those in a porcine intestinal epithelial cell model. Results showed that FB1 exposure did not reduce transepithelial electrical resistance, induce abnormal expression of tight junction genes, or cause significant fluctuations in inflammatory factor levels in chicken intestinal organoid monolayers. Mechanistically, FB1 enhances chicken intestinal stem cell function by activating the Wnt/β-catenin pathway, thereby promoting epithelial regeneration and renewal to increase FB1 resistance and decrease toxin sensitivity in chickens. This study reveals a strategy for enhancing FB1 tolerance in poultry by promoting intestinal stem cell function, providing a new perspective for developing mycotoxin prevention and control strategies.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).