丝胶蛋白通过增加谷氨酰胺代谢提高承德无角黑山羊冻存精子质量。

IF 2.7 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Animals Pub Date : 2025-09-28 DOI:10.3390/ani15192830
Yang Yu, Wei Xia, Wentao Zhang, Chenyu Tao, Xiaofeng Tian, Mengqi Li, Xiaosheng Zhang, Jinlong Zhang, Shunran Zhao, Yatian Qi, Tianmiao Qin, Junjie Li
{"title":"丝胶蛋白通过增加谷氨酰胺代谢提高承德无角黑山羊冻存精子质量。","authors":"Yang Yu, Wei Xia, Wentao Zhang, Chenyu Tao, Xiaofeng Tian, Mengqi Li, Xiaosheng Zhang, Jinlong Zhang, Shunran Zhao, Yatian Qi, Tianmiao Qin, Junjie Li","doi":"10.3390/ani15192830","DOIUrl":null,"url":null,"abstract":"<p><p>The cryopreservation of Chengde polled goat semen plays a critical role in conserving genetic resources, enhancing the utilization efficiency of superior breeding bucks, and advancing artificial insemination techniques. However, spermatozoa are vulnerable to oxidative stress during the freezing process, which can significantly compromise sperm motility. In this study, pooled ejaculates from multiple bucks were divided into six groups, including a control group cryopreserved with conventional extender and five treatment groups supplemented with sericin at concentrations of 0.2%, 0.4%, 0.6%, 0.8%, and 1.0% (<i>w</i>/<i>v</i>). The results demonstrated that supplementation of the semen cryoprotectant with 0.6% sericin significantly improved post-thaw sperm viability to 65.25% in Chengde hornless goats, while concurrently reducing both the sperm abnormality rate (<i>p</i> < 0.05) and intracellular ROS levels (<i>p</i> < 0.05). Integrated TMT proteomics and LC/MS metabolomics further compared the 0.6% sericin group with the frozen control group and identified 162 differentially expressed proteins and 109 differential metabolites between the sericin supplementation and frozen control groups. Functional analysis revealed the significant enrichment of differential metabolites, such as glutamine, in the alanine, aspartate, and glutamate metabolism pathway, concomitant with the marked upregulation of antioxidant proteins including LRP8, GSTM3, and SIRT2. Thus, 0.6% sericin enhances cryotolerance primarily by improving sperm viability, reducing oxidative damage, and sustaining energy metabolism. These findings indicate that sericin enhances cryotolerance by reducing oxidative damage and supporting metabolic function, providing preliminary molecular insights for improving goat semen cryopreservation.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 19","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12523751/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sericin Enhances Cryopreserved Sperm Quality in Chengde Hornless Black Goats by Increasing Glutamine Metabolism.\",\"authors\":\"Yang Yu, Wei Xia, Wentao Zhang, Chenyu Tao, Xiaofeng Tian, Mengqi Li, Xiaosheng Zhang, Jinlong Zhang, Shunran Zhao, Yatian Qi, Tianmiao Qin, Junjie Li\",\"doi\":\"10.3390/ani15192830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cryopreservation of Chengde polled goat semen plays a critical role in conserving genetic resources, enhancing the utilization efficiency of superior breeding bucks, and advancing artificial insemination techniques. However, spermatozoa are vulnerable to oxidative stress during the freezing process, which can significantly compromise sperm motility. In this study, pooled ejaculates from multiple bucks were divided into six groups, including a control group cryopreserved with conventional extender and five treatment groups supplemented with sericin at concentrations of 0.2%, 0.4%, 0.6%, 0.8%, and 1.0% (<i>w</i>/<i>v</i>). The results demonstrated that supplementation of the semen cryoprotectant with 0.6% sericin significantly improved post-thaw sperm viability to 65.25% in Chengde hornless goats, while concurrently reducing both the sperm abnormality rate (<i>p</i> < 0.05) and intracellular ROS levels (<i>p</i> < 0.05). Integrated TMT proteomics and LC/MS metabolomics further compared the 0.6% sericin group with the frozen control group and identified 162 differentially expressed proteins and 109 differential metabolites between the sericin supplementation and frozen control groups. Functional analysis revealed the significant enrichment of differential metabolites, such as glutamine, in the alanine, aspartate, and glutamate metabolism pathway, concomitant with the marked upregulation of antioxidant proteins including LRP8, GSTM3, and SIRT2. Thus, 0.6% sericin enhances cryotolerance primarily by improving sperm viability, reducing oxidative damage, and sustaining energy metabolism. These findings indicate that sericin enhances cryotolerance by reducing oxidative damage and supporting metabolic function, providing preliminary molecular insights for improving goat semen cryopreservation.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"15 19\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12523751/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani15192830\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15192830","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

承德山羊精液冷冻保存对保存遗传资源、提高优良种雄鹿利用效率、推进人工授精技术具有重要意义。然而,精子在冷冻过程中容易受到氧化应激的影响,这可能会严重损害精子的活力。本研究将多雄鹿的射精池分为6组,包括低温保存的对照组和添加0.2%、0.4%、0.6%、0.8%和1.0% (w/v)丝胶蛋白的5个处理组。结果表明,添加0.6%丝胶蛋白的精液冷冻保护剂可显著提高承德无角山羊解冻后精子存活率至65.25%,同时降低精子异常率(p < 0.05)和细胞内ROS水平(p < 0.05)。综合TMT蛋白质组学和LC/MS代谢组学进一步将0.6%丝胶蛋白组与冷冻对照组进行比较,鉴定出162个差异表达蛋白和109个差异代谢物。功能分析显示,谷氨酰胺等谷氨酸、天冬氨酸和谷氨酸代谢途径中的差异代谢物显著富集,同时抗氧化蛋白LRP8、GSTM3和SIRT2显著上调。因此,0.6%的丝胶蛋白主要通过提高精子活力、减少氧化损伤和维持能量代谢来增强低温耐受性。这些结果表明丝胶蛋白通过减少氧化损伤和支持代谢功能来增强低温耐受性,为改善山羊精液低温保存提供了初步的分子认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sericin Enhances Cryopreserved Sperm Quality in Chengde Hornless Black Goats by Increasing Glutamine Metabolism.

The cryopreservation of Chengde polled goat semen plays a critical role in conserving genetic resources, enhancing the utilization efficiency of superior breeding bucks, and advancing artificial insemination techniques. However, spermatozoa are vulnerable to oxidative stress during the freezing process, which can significantly compromise sperm motility. In this study, pooled ejaculates from multiple bucks were divided into six groups, including a control group cryopreserved with conventional extender and five treatment groups supplemented with sericin at concentrations of 0.2%, 0.4%, 0.6%, 0.8%, and 1.0% (w/v). The results demonstrated that supplementation of the semen cryoprotectant with 0.6% sericin significantly improved post-thaw sperm viability to 65.25% in Chengde hornless goats, while concurrently reducing both the sperm abnormality rate (p < 0.05) and intracellular ROS levels (p < 0.05). Integrated TMT proteomics and LC/MS metabolomics further compared the 0.6% sericin group with the frozen control group and identified 162 differentially expressed proteins and 109 differential metabolites between the sericin supplementation and frozen control groups. Functional analysis revealed the significant enrichment of differential metabolites, such as glutamine, in the alanine, aspartate, and glutamate metabolism pathway, concomitant with the marked upregulation of antioxidant proteins including LRP8, GSTM3, and SIRT2. Thus, 0.6% sericin enhances cryotolerance primarily by improving sperm viability, reducing oxidative damage, and sustaining energy metabolism. These findings indicate that sericin enhances cryotolerance by reducing oxidative damage and supporting metabolic function, providing preliminary molecular insights for improving goat semen cryopreservation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Animals
Animals Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍: Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信