Fengying Ma, Le Zhou, Lili Guo, Chencheng Chang, Dan Dan, Yanchun Bao, Guiting Han, Mingjuan Gu, Lin Zhu, Risu Na, Caixia Shi, Jiaxin Zhang, Wenguang Zhang
{"title":"牛KLF基因家族的综合鉴定及其在肌肉发育中的功能调控:来自单核转录组学的见解。","authors":"Fengying Ma, Le Zhou, Lili Guo, Chencheng Chang, Dan Dan, Yanchun Bao, Guiting Han, Mingjuan Gu, Lin Zhu, Risu Na, Caixia Shi, Jiaxin Zhang, Wenguang Zhang","doi":"10.3390/ani15192930","DOIUrl":null,"url":null,"abstract":"<p><p>The Krüppel-like factor (<i>KLF</i>) family of transcription regulators plays pivotal roles in adipogenesis, myogenesis, and metabolism. While comprehensively studied in humans and mice, its characterization in cattle remains limited, especially within the skeletal muscle niche. This study aimed to systematically characterize the <i>KLF</i> family in Bos taurus and elucidate its role in breed-specific muscular development. We employed an integrated approach of comparative genomics and single-nucleus RNA sequencing (snRNA-seq) on longissimus dorsi muscle from Angus (ANG, beef breed) and Holstein (HST, dairy breed) cattle. Phylogenomic analysis identified 14 <i>KLF</i> genes, revealing evolutionary conservation and potential functional divergence. snRNA-seq delineated 11 distinct cell populations and uncovered cell-type-specific expression patterns of <i>KLFs</i>. Further machine learning based analysis pinpointed <i>KLF6</i>, <i>KLF9</i>, <i>KLF10</i>, and <i>KLF12</i> as key global drivers of transcriptional differences between breeds, while <i>KLF6</i> was identified as a major cell-type-specific contributor in lymphatic endothelial cells. Our work provides a foundational resource for understanding the <i>KLF</i> family in cattle and identifies promising candidate genes for improving meat production traits through molecular breeding.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 19","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524274/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Identification of the Bovine KLF Gene Family and Its Functional Regulation in Muscle Development: Insights from Single-Nuclei Transcriptomics.\",\"authors\":\"Fengying Ma, Le Zhou, Lili Guo, Chencheng Chang, Dan Dan, Yanchun Bao, Guiting Han, Mingjuan Gu, Lin Zhu, Risu Na, Caixia Shi, Jiaxin Zhang, Wenguang Zhang\",\"doi\":\"10.3390/ani15192930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Krüppel-like factor (<i>KLF</i>) family of transcription regulators plays pivotal roles in adipogenesis, myogenesis, and metabolism. While comprehensively studied in humans and mice, its characterization in cattle remains limited, especially within the skeletal muscle niche. This study aimed to systematically characterize the <i>KLF</i> family in Bos taurus and elucidate its role in breed-specific muscular development. We employed an integrated approach of comparative genomics and single-nucleus RNA sequencing (snRNA-seq) on longissimus dorsi muscle from Angus (ANG, beef breed) and Holstein (HST, dairy breed) cattle. Phylogenomic analysis identified 14 <i>KLF</i> genes, revealing evolutionary conservation and potential functional divergence. snRNA-seq delineated 11 distinct cell populations and uncovered cell-type-specific expression patterns of <i>KLFs</i>. Further machine learning based analysis pinpointed <i>KLF6</i>, <i>KLF9</i>, <i>KLF10</i>, and <i>KLF12</i> as key global drivers of transcriptional differences between breeds, while <i>KLF6</i> was identified as a major cell-type-specific contributor in lymphatic endothelial cells. Our work provides a foundational resource for understanding the <i>KLF</i> family in cattle and identifies promising candidate genes for improving meat production traits through molecular breeding.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"15 19\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524274/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani15192930\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15192930","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Comprehensive Identification of the Bovine KLF Gene Family and Its Functional Regulation in Muscle Development: Insights from Single-Nuclei Transcriptomics.
The Krüppel-like factor (KLF) family of transcription regulators plays pivotal roles in adipogenesis, myogenesis, and metabolism. While comprehensively studied in humans and mice, its characterization in cattle remains limited, especially within the skeletal muscle niche. This study aimed to systematically characterize the KLF family in Bos taurus and elucidate its role in breed-specific muscular development. We employed an integrated approach of comparative genomics and single-nucleus RNA sequencing (snRNA-seq) on longissimus dorsi muscle from Angus (ANG, beef breed) and Holstein (HST, dairy breed) cattle. Phylogenomic analysis identified 14 KLF genes, revealing evolutionary conservation and potential functional divergence. snRNA-seq delineated 11 distinct cell populations and uncovered cell-type-specific expression patterns of KLFs. Further machine learning based analysis pinpointed KLF6, KLF9, KLF10, and KLF12 as key global drivers of transcriptional differences between breeds, while KLF6 was identified as a major cell-type-specific contributor in lymphatic endothelial cells. Our work provides a foundational resource for understanding the KLF family in cattle and identifies promising candidate genes for improving meat production traits through molecular breeding.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).