(Me3Si)3SiH配合物中的蓝移氢键。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Maximilián Lamanec, Vladimír Špirko, Svatopluk Civiš, Pavel Hobza
{"title":"(Me3Si)3SiH配合物中的蓝移氢键。","authors":"Maximilián Lamanec, Vladimír Špirko, Svatopluk Civiš, Pavel Hobza","doi":"10.1021/acs.jpca.5c05765","DOIUrl":null,"url":null,"abstract":"<p><p>Hydridic hydrogen bonds, formed by X-H···Y interactions with negatively charged hydrogen, expand the conventional view of H-bonding beyond elements that are more electronegative than hydrogen. Using a highly polarizable silane donor (Me<sub>3</sub>Si)<sub>3</sub>SiH, we systematically examined various electron acceptors (σ- and π-hole) and observed both red and blue shifts in the X-H stretching frequency. We provide the first experimental evidence of a blue-shifting hydridic bond and report the largest experimental blue shift for any hydrogen-bonded system. Thermodynamic, spectroscopic, and theoretical analyses show that the dispersion energy is crucial for stabilizing these complexes and reproducing their spectral signatures. Notably, the IR band intensity increases for red-shifting bonds and increases or decreases for blue-shifting hydridic bonds, offering a distinct spectroscopic fingerprint. Adiabatic ALMO-EDA calculations indicate that red shifts in hydridic bonds primarily arise from electrostatics and dispersion rather than charge transfer. It can be thus concluded that protonic as well as hydridic hydrogen bonds exhibit similar spectral manifestations, namely, the red or blue shift of the X-H stretching frequency connected with the intensity increase or decrease. These findings broaden hydrogen-bonding paradigms for diverse chemical applications.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blue-Shifting Hydridic Hydrogen Bonds in Complexes of (Me<sub>3</sub>Si)<sub>3</sub>SiH.\",\"authors\":\"Maximilián Lamanec, Vladimír Špirko, Svatopluk Civiš, Pavel Hobza\",\"doi\":\"10.1021/acs.jpca.5c05765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydridic hydrogen bonds, formed by X-H···Y interactions with negatively charged hydrogen, expand the conventional view of H-bonding beyond elements that are more electronegative than hydrogen. Using a highly polarizable silane donor (Me<sub>3</sub>Si)<sub>3</sub>SiH, we systematically examined various electron acceptors (σ- and π-hole) and observed both red and blue shifts in the X-H stretching frequency. We provide the first experimental evidence of a blue-shifting hydridic bond and report the largest experimental blue shift for any hydrogen-bonded system. Thermodynamic, spectroscopic, and theoretical analyses show that the dispersion energy is crucial for stabilizing these complexes and reproducing their spectral signatures. Notably, the IR band intensity increases for red-shifting bonds and increases or decreases for blue-shifting hydridic bonds, offering a distinct spectroscopic fingerprint. Adiabatic ALMO-EDA calculations indicate that red shifts in hydridic bonds primarily arise from electrostatics and dispersion rather than charge transfer. It can be thus concluded that protonic as well as hydridic hydrogen bonds exhibit similar spectral manifestations, namely, the red or blue shift of the X-H stretching frequency connected with the intensity increase or decrease. These findings broaden hydrogen-bonding paradigms for diverse chemical applications.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.5c05765\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c05765","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氢键是由X-H···Y与带负电荷的氢相互作用形成的,它将传统的氢键观点扩展到了电负性比氢更强的元素之外。利用高极化硅烷供体(Me3Si)3SiH,我们系统地检测了各种电子受体(σ-和π-空穴),并观察到X-H拉伸频率的红移和蓝移。我们提供了蓝移氢键的第一个实验证据,并报告了任何氢键系统中最大的实验蓝移。热力学、光谱和理论分析表明,色散能量对于稳定这些配合物和再现它们的光谱特征是至关重要的。值得注意的是,红移键的红外波段强度增加,蓝移氢化物键的红外波段强度增加或减少,提供了一个独特的光谱指纹。绝热ALMO-EDA计算表明,氢键中的红移主要是由静电和色散引起的,而不是电荷转移。由此可以得出,质子氢键和氢键具有相似的光谱表现,即X-H拉伸频率随强度的增加或减少而发生红移或蓝移。这些发现为不同的化学应用拓宽了氢键模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blue-Shifting Hydridic Hydrogen Bonds in Complexes of (Me3Si)3SiH.

Hydridic hydrogen bonds, formed by X-H···Y interactions with negatively charged hydrogen, expand the conventional view of H-bonding beyond elements that are more electronegative than hydrogen. Using a highly polarizable silane donor (Me3Si)3SiH, we systematically examined various electron acceptors (σ- and π-hole) and observed both red and blue shifts in the X-H stretching frequency. We provide the first experimental evidence of a blue-shifting hydridic bond and report the largest experimental blue shift for any hydrogen-bonded system. Thermodynamic, spectroscopic, and theoretical analyses show that the dispersion energy is crucial for stabilizing these complexes and reproducing their spectral signatures. Notably, the IR band intensity increases for red-shifting bonds and increases or decreases for blue-shifting hydridic bonds, offering a distinct spectroscopic fingerprint. Adiabatic ALMO-EDA calculations indicate that red shifts in hydridic bonds primarily arise from electrostatics and dispersion rather than charge transfer. It can be thus concluded that protonic as well as hydridic hydrogen bonds exhibit similar spectral manifestations, namely, the red or blue shift of the X-H stretching frequency connected with the intensity increase or decrease. These findings broaden hydrogen-bonding paradigms for diverse chemical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信