Belinda E Hetzler, Prashant Donthamsetti, Robert M Wolesensky, Cherise Stanley, Ehud Y Isacoff, Dirk Trauner
{"title":"利用可光切换的远程拴链配体对多巴胺D1受体的可逆拮抗作用。","authors":"Belinda E Hetzler, Prashant Donthamsetti, Robert M Wolesensky, Cherise Stanley, Ehud Y Isacoff, Dirk Trauner","doi":"10.1021/acschembio.5c00441","DOIUrl":null,"url":null,"abstract":"<p><p>Dopamine D1 receptor (D1R) plays key roles in health and disease. D1R is broadly expressed throughout the brain and body and is dynamically activated in response to endogenous dopamine, making it difficult to target this receptor with sufficient precision. We previously developed a robust light-activatable, tetherable agonist for D1R, wherein a temporally precise photoswitch (the P compound) binds to a genetically encoded membrane anchoring protein (the M protein) in specific brain locations and cell types. Here we extended our approach by developing a complementary antagonist P compound that could be used to block specific populations of D1R in the brain with precise timing. Together, we have generated a robust toolkit for interrogating D1R function in the brain with unprecedented precision.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversible Antagonism of Dopamine D1 Receptor Using a Photoswitchable Remotely Tethered Ligand.\",\"authors\":\"Belinda E Hetzler, Prashant Donthamsetti, Robert M Wolesensky, Cherise Stanley, Ehud Y Isacoff, Dirk Trauner\",\"doi\":\"10.1021/acschembio.5c00441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dopamine D1 receptor (D1R) plays key roles in health and disease. D1R is broadly expressed throughout the brain and body and is dynamically activated in response to endogenous dopamine, making it difficult to target this receptor with sufficient precision. We previously developed a robust light-activatable, tetherable agonist for D1R, wherein a temporally precise photoswitch (the P compound) binds to a genetically encoded membrane anchoring protein (the M protein) in specific brain locations and cell types. Here we extended our approach by developing a complementary antagonist P compound that could be used to block specific populations of D1R in the brain with precise timing. Together, we have generated a robust toolkit for interrogating D1R function in the brain with unprecedented precision.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.5c00441\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.5c00441","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Reversible Antagonism of Dopamine D1 Receptor Using a Photoswitchable Remotely Tethered Ligand.
Dopamine D1 receptor (D1R) plays key roles in health and disease. D1R is broadly expressed throughout the brain and body and is dynamically activated in response to endogenous dopamine, making it difficult to target this receptor with sufficient precision. We previously developed a robust light-activatable, tetherable agonist for D1R, wherein a temporally precise photoswitch (the P compound) binds to a genetically encoded membrane anchoring protein (the M protein) in specific brain locations and cell types. Here we extended our approach by developing a complementary antagonist P compound that could be used to block specific populations of D1R in the brain with precise timing. Together, we have generated a robust toolkit for interrogating D1R function in the brain with unprecedented precision.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.