利用机器学习预测木质素的溶解度。

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Changhang Zhang, Chenxin Sun, Xinyu Wu, Xiaoyu Li, Yunchang He, Hailan Lian
{"title":"利用机器学习预测木质素的溶解度。","authors":"Changhang Zhang, Chenxin Sun, Xinyu Wu, Xiaoyu Li, Yunchang He, Hailan Lian","doi":"10.1021/acs.biomac.5c00874","DOIUrl":null,"url":null,"abstract":"<p><p>Lignin is a highly promising renewable resource, but its practical application faces challenges due to its polydispersity and variability in solubility. This study utilized real-world characterization data (gel permeation chromatography (GPC) and HSQC NMR) to construct the molecular structures of 100 lignins of varying molecular weights. We used a machine learning (ML) approach, combining structural features with quantum chemical information, to predict the solubilities of these lignins in various solvents (calculated using COSMOtherm software). The machine learning model demonstrated high accuracy (<i>R</i><sup>2</sup> values of 0.987, 0.892, and 0.970, respectively), demonstrating its effectiveness in predicting lignin solubility based on structure and solvent properties. Furthermore, SHAP analysis elucidated the influence of individual molecular features on solubility predictions, contributing to our understanding of how the lignin structure influences solubility. This study provides valuable insights into the selection of highly soluble green solvents and the preparation of monodisperse lignin.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Solubility of Lignin via Machine Learning.\",\"authors\":\"Changhang Zhang, Chenxin Sun, Xinyu Wu, Xiaoyu Li, Yunchang He, Hailan Lian\",\"doi\":\"10.1021/acs.biomac.5c00874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lignin is a highly promising renewable resource, but its practical application faces challenges due to its polydispersity and variability in solubility. This study utilized real-world characterization data (gel permeation chromatography (GPC) and HSQC NMR) to construct the molecular structures of 100 lignins of varying molecular weights. We used a machine learning (ML) approach, combining structural features with quantum chemical information, to predict the solubilities of these lignins in various solvents (calculated using COSMOtherm software). The machine learning model demonstrated high accuracy (<i>R</i><sup>2</sup> values of 0.987, 0.892, and 0.970, respectively), demonstrating its effectiveness in predicting lignin solubility based on structure and solvent properties. Furthermore, SHAP analysis elucidated the influence of individual molecular features on solubility predictions, contributing to our understanding of how the lignin structure influences solubility. This study provides valuable insights into the selection of highly soluble green solvents and the preparation of monodisperse lignin.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.5c00874\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00874","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

木质素是一种非常有前途的可再生资源,但由于其多分散性和溶解度的多变性,其实际应用面临挑战。本研究利用真实世界的表征数据(凝胶渗透色谱(GPC)和HSQC NMR)构建了100种不同分子量的木质素的分子结构。我们使用机器学习(ML)方法,结合结构特征和量子化学信息,来预测这些木质素在各种溶剂中的溶解度(使用COSMOtherm软件计算)。该机器学习模型具有较高的准确性(R2分别为0.987、0.892和0.970),表明其在基于结构和溶剂性质预测木质素溶解度方面是有效的。此外,SHAP分析阐明了单个分子特征对溶解度预测的影响,有助于我们了解木质素结构如何影响溶解度。本研究为高可溶性绿色溶剂的选择和单分散木质素的制备提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the Solubility of Lignin via Machine Learning.

Lignin is a highly promising renewable resource, but its practical application faces challenges due to its polydispersity and variability in solubility. This study utilized real-world characterization data (gel permeation chromatography (GPC) and HSQC NMR) to construct the molecular structures of 100 lignins of varying molecular weights. We used a machine learning (ML) approach, combining structural features with quantum chemical information, to predict the solubilities of these lignins in various solvents (calculated using COSMOtherm software). The machine learning model demonstrated high accuracy (R2 values of 0.987, 0.892, and 0.970, respectively), demonstrating its effectiveness in predicting lignin solubility based on structure and solvent properties. Furthermore, SHAP analysis elucidated the influence of individual molecular features on solubility predictions, contributing to our understanding of how the lignin structure influences solubility. This study provides valuable insights into the selection of highly soluble green solvents and the preparation of monodisperse lignin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信