多类型交通参与者微观行为预测的在线自适应学习方法。

IF 6.2 1区 工程技术 Q1 ERGONOMICS
Meng Li , Tao Chen , Hanggai Chen , Yicheng Zhang , Yan Zhang
{"title":"多类型交通参与者微观行为预测的在线自适应学习方法。","authors":"Meng Li ,&nbsp;Tao Chen ,&nbsp;Hanggai Chen ,&nbsp;Yicheng Zhang ,&nbsp;Yan Zhang","doi":"10.1016/j.aap.2025.108250","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting multi-type traffic participant behavior in dynamic transportation hubs remains challenging. Existing deep-learning frameworks lack robust online learning and autonomous error-correction, limiting their reliability under evolving conditions. Most state-of-the-art models exhibit poor cross-scenario generalization, requiring intensive retraining for new settings. Prediction errors also propagate over time due to absent real-time correction.</div><div>To address these limitations, this paper introduces an adaptive framework integrating online learning with probabilistic error correction. Key innovations include: (1) an Extended Kalman Filter-based module for real-time trajectory correction; (2) a hierarchical graph encoder enabling transfer learning with minimal retraining; and (3) unified node–edge-plane modeling for multimodal context fusion. Validated using real-world hub data and redesigned benchmark experiments, our method significantly outperforms existing approaches in unseen scenarios, positioning it as a promising solution for real-time behavioral prediction in modern traffic systems.</div></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"223 ","pages":"Article 108250"},"PeriodicalIF":6.2000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An online adaptive learning approach for predicting multi-type traffic participants’ microscopic behavior\",\"authors\":\"Meng Li ,&nbsp;Tao Chen ,&nbsp;Hanggai Chen ,&nbsp;Yicheng Zhang ,&nbsp;Yan Zhang\",\"doi\":\"10.1016/j.aap.2025.108250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Predicting multi-type traffic participant behavior in dynamic transportation hubs remains challenging. Existing deep-learning frameworks lack robust online learning and autonomous error-correction, limiting their reliability under evolving conditions. Most state-of-the-art models exhibit poor cross-scenario generalization, requiring intensive retraining for new settings. Prediction errors also propagate over time due to absent real-time correction.</div><div>To address these limitations, this paper introduces an adaptive framework integrating online learning with probabilistic error correction. Key innovations include: (1) an Extended Kalman Filter-based module for real-time trajectory correction; (2) a hierarchical graph encoder enabling transfer learning with minimal retraining; and (3) unified node–edge-plane modeling for multimodal context fusion. Validated using real-world hub data and redesigned benchmark experiments, our method significantly outperforms existing approaches in unseen scenarios, positioning it as a promising solution for real-time behavioral prediction in modern traffic systems.</div></div>\",\"PeriodicalId\":6926,\"journal\":{\"name\":\"Accident; analysis and prevention\",\"volume\":\"223 \",\"pages\":\"Article 108250\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accident; analysis and prevention\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001457525003380\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ERGONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457525003380","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

动态交通枢纽中多类型交通参与者行为的预测仍然具有挑战性。现有的深度学习框架缺乏强大的在线学习和自主纠错能力,限制了它们在不断变化的条件下的可靠性。大多数最先进的模型表现出较差的跨场景泛化,需要对新设置进行密集的再训练。由于缺乏实时校正,预测误差也会随着时间的推移而传播。为了解决这些限制,本文引入了一个将在线学习与概率纠错相结合的自适应框架。主要创新包括:(1)基于扩展卡尔曼滤波的实时轨迹校正模块;(2)一种分层图编码器,可以用最少的再训练实现迁移学习;(3)统一节点-边缘-平面建模,实现多模态上下文融合。通过使用真实世界的枢纽数据和重新设计的基准实验进行验证,我们的方法在未知场景中显著优于现有方法,将其定位为现代交通系统中实时行为预测的有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An online adaptive learning approach for predicting multi-type traffic participants’ microscopic behavior
Predicting multi-type traffic participant behavior in dynamic transportation hubs remains challenging. Existing deep-learning frameworks lack robust online learning and autonomous error-correction, limiting their reliability under evolving conditions. Most state-of-the-art models exhibit poor cross-scenario generalization, requiring intensive retraining for new settings. Prediction errors also propagate over time due to absent real-time correction.
To address these limitations, this paper introduces an adaptive framework integrating online learning with probabilistic error correction. Key innovations include: (1) an Extended Kalman Filter-based module for real-time trajectory correction; (2) a hierarchical graph encoder enabling transfer learning with minimal retraining; and (3) unified node–edge-plane modeling for multimodal context fusion. Validated using real-world hub data and redesigned benchmark experiments, our method significantly outperforms existing approaches in unseen scenarios, positioning it as a promising solution for real-time behavioral prediction in modern traffic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.90
自引率
16.90%
发文量
264
审稿时长
48 days
期刊介绍: Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信