基于优化控制策略的分层电致变色构建。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuangdui Wu, Jiawei Sun, Zhoujie Duan, Xiaolei Li, Jun Xiao, Hongli Sun, Borong Lin
{"title":"基于优化控制策略的分层电致变色构建。","authors":"Shuangdui Wu, Jiawei Sun, Zhoujie Duan, Xiaolei Li, Jun Xiao, Hongli Sun, Borong Lin","doi":"10.1002/advs.202513530","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochromic smart windows struggle with a material-application disconnect. So, a building-centric paradigm is established to bridge this gap through dual breakthroughs: multi-band hierarchical material and control strategy. An electrochromic device (ECD) based on Prussian blue (PB) with multi-band hierarchical modulation is demonstrated, integrating Fe<sub>4</sub>[Fe(CN)<sub>6</sub>]<sub>3</sub> and Nb<sub>18</sub>W<sub>16</sub>O<sub>93</sub> film electrodes, where hierarchical regulation relies on potassium ion shuttling (rocking-chair mechanism) and cation-anion co-intercalation dynamics. It enables four spectral customization states: transparent heating (S1), zero-energy bright heating (S2), daylight-preserving bright cooling (S3), and maximum-blocking dark cooling (S4). An Electrochromic window (ECW) constructed with such ECD, when coupled with optional intelligent control strategies, transforms these capabilities into unprecedented energy savings. The load-responsive strategy focuses on building internal demands, leverages the zero-energy S2 state for >75% of summer operation, achieving 25.4% cooling energy reduction versus normal windows. The climate-adaptive strategy, centered on external environmental constraints and guided by \"location-specific adjustment\", reveals >50% performance disparities between control parameters, enabling location-optimized operation such as 56.9% summer energy savings even in cold Helsinki. By embedding tunable spectral control into the building energy management logic, material, and control strategy innovations have jointly paved a scalable path from laboratory innovation to building application.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e13530"},"PeriodicalIF":14.1000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building-Tailored Hierarchical Electrochromism with Optimized Control Strategies.\",\"authors\":\"Shuangdui Wu, Jiawei Sun, Zhoujie Duan, Xiaolei Li, Jun Xiao, Hongli Sun, Borong Lin\",\"doi\":\"10.1002/advs.202513530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrochromic smart windows struggle with a material-application disconnect. So, a building-centric paradigm is established to bridge this gap through dual breakthroughs: multi-band hierarchical material and control strategy. An electrochromic device (ECD) based on Prussian blue (PB) with multi-band hierarchical modulation is demonstrated, integrating Fe<sub>4</sub>[Fe(CN)<sub>6</sub>]<sub>3</sub> and Nb<sub>18</sub>W<sub>16</sub>O<sub>93</sub> film electrodes, where hierarchical regulation relies on potassium ion shuttling (rocking-chair mechanism) and cation-anion co-intercalation dynamics. It enables four spectral customization states: transparent heating (S1), zero-energy bright heating (S2), daylight-preserving bright cooling (S3), and maximum-blocking dark cooling (S4). An Electrochromic window (ECW) constructed with such ECD, when coupled with optional intelligent control strategies, transforms these capabilities into unprecedented energy savings. The load-responsive strategy focuses on building internal demands, leverages the zero-energy S2 state for >75% of summer operation, achieving 25.4% cooling energy reduction versus normal windows. The climate-adaptive strategy, centered on external environmental constraints and guided by \\\"location-specific adjustment\\\", reveals >50% performance disparities between control parameters, enabling location-optimized operation such as 56.9% summer energy savings even in cold Helsinki. By embedding tunable spectral control into the building energy management logic, material, and control strategy innovations have jointly paved a scalable path from laboratory innovation to building application.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e13530\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202513530\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202513530","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电致变色智能窗户与材料应用脱节。因此,建立了以建筑为中心的范例,通过双重突破:多波段分层材料和控制策略来弥合这一差距。提出了一种基于普鲁士蓝(PB)的多波段分层调制电致变色器件(ECD),该器件集成了Fe4[Fe(CN)6]3和Nb18W16O93薄膜电极,其分层调节依赖于钾离子的来回移动(摇椅机制)和正负离子共插动力学。它支持四种光谱定制状态:透明加热(S1)、零能量明亮加热(S2)、保光明亮冷却(S3)和最大阻挡暗冷却(S4)。采用这种ECD构建的电致变色窗口(ECW),与可选的智能控制策略相结合,将这些功能转化为前所未有的节能。负载响应策略侧重于建筑内部需求,在夏季运行的75%的时间里,利用零能耗的S2状态,与普通窗户相比,实现了25.4%的制冷能耗降低。气候适应策略以外部环境约束为中心,以“特定位置调整”为指导,揭示了控制参数之间50%的性能差异,实现了位置优化运行,例如即使在寒冷的赫尔辛基夏季节能56.9%。通过将可调光谱控制嵌入建筑能源管理逻辑、材料和控制策略的创新,共同铺平了一条从实验室创新到建筑应用的可扩展路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building-Tailored Hierarchical Electrochromism with Optimized Control Strategies.

Electrochromic smart windows struggle with a material-application disconnect. So, a building-centric paradigm is established to bridge this gap through dual breakthroughs: multi-band hierarchical material and control strategy. An electrochromic device (ECD) based on Prussian blue (PB) with multi-band hierarchical modulation is demonstrated, integrating Fe4[Fe(CN)6]3 and Nb18W16O93 film electrodes, where hierarchical regulation relies on potassium ion shuttling (rocking-chair mechanism) and cation-anion co-intercalation dynamics. It enables four spectral customization states: transparent heating (S1), zero-energy bright heating (S2), daylight-preserving bright cooling (S3), and maximum-blocking dark cooling (S4). An Electrochromic window (ECW) constructed with such ECD, when coupled with optional intelligent control strategies, transforms these capabilities into unprecedented energy savings. The load-responsive strategy focuses on building internal demands, leverages the zero-energy S2 state for >75% of summer operation, achieving 25.4% cooling energy reduction versus normal windows. The climate-adaptive strategy, centered on external environmental constraints and guided by "location-specific adjustment", reveals >50% performance disparities between control parameters, enabling location-optimized operation such as 56.9% summer energy savings even in cold Helsinki. By embedding tunable spectral control into the building energy management logic, material, and control strategy innovations have jointly paved a scalable path from laboratory innovation to building application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信