具有亚色吸收和高玻璃化转变温度的巨型二聚体受体实现了超过29%效率和高稳定性的室内有机光伏。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bosen Zou, Ho Ming Ng, Zhengkai Li, Yan Wang, Qingyuan Wang, Dezhang Chen, Zefan Yao, Hongxiang Li, Chunliang Li, Xianghao Zeng, Wei Liu, Jonathan E Halpert, Huawei Hu, Chunhui Duan, Zonglong Zhu, Tom Wu, Wai-Yeung Wong, Zhi-Guo Zhang, He Yan, Han Yu
{"title":"具有亚色吸收和高玻璃化转变温度的巨型二聚体受体实现了超过29%效率和高稳定性的室内有机光伏。","authors":"Bosen Zou, Ho Ming Ng, Zhengkai Li, Yan Wang, Qingyuan Wang, Dezhang Chen, Zefan Yao, Hongxiang Li, Chunliang Li, Xianghao Zeng, Wei Liu, Jonathan E Halpert, Huawei Hu, Chunhui Duan, Zonglong Zhu, Tom Wu, Wai-Yeung Wong, Zhi-Guo Zhang, He Yan, Han Yu","doi":"10.1002/advs.202512690","DOIUrl":null,"url":null,"abstract":"<p><p>Indoor organic photovoltaics (IOPVs) are an emerging LED light recycling technology with promising applications such as indoor off-grid ecosystem for the Internet of Things. However, efficient and stable IOPVs based on giant dimeric acceptors (GDAs) are rarely reported due to the dearth of GDAs with hypsochromic absorption (absorption onset < 850 nm) and good crystallinity. Herein, two hypsochromic GDAs are proposed with different fluorination degrees, namely DY4FO-V and DY6FO-V, and process a systematic study of hypsochromic acceptor materials from the small molecule to dimers and polymer. Interestingly, both hypsochromic GDAs possess better crystallinity, thus faster carrier transport and suppress recombination than small-molecule and polymer acceptor-based devices. With extra fluorination, PM6:DY6FO-V exhibits higher external quantum efficiency response and tighter packing compared with PM6:DY4FO-V. As a result, PM6:DY6FO-V delivers a champion efficiency over 29% under a LED illumination of 2000 lux (2600 k), positioning it the highest values for GDA-based IOPVs. Meanwhile, the high glass transition temperature of DY6FO-V endowed corresponding devices with great photostability and enhanced mechanical stability in flexible devices, demonstrating the feasibility of practical applications of the DY6FO-V-based IOPVs. This research underscores the huge potential of developing hypsochromic GDAs for highly efficient IOPVs with superior stability.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e12690"},"PeriodicalIF":14.1000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indoor Organic Photovoltaics with Over 29% Efficiency and Great Stability Enabled by Giant Dimeric Acceptors with Hypsochromic Absorption and High Glass Transition Temperature.\",\"authors\":\"Bosen Zou, Ho Ming Ng, Zhengkai Li, Yan Wang, Qingyuan Wang, Dezhang Chen, Zefan Yao, Hongxiang Li, Chunliang Li, Xianghao Zeng, Wei Liu, Jonathan E Halpert, Huawei Hu, Chunhui Duan, Zonglong Zhu, Tom Wu, Wai-Yeung Wong, Zhi-Guo Zhang, He Yan, Han Yu\",\"doi\":\"10.1002/advs.202512690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Indoor organic photovoltaics (IOPVs) are an emerging LED light recycling technology with promising applications such as indoor off-grid ecosystem for the Internet of Things. However, efficient and stable IOPVs based on giant dimeric acceptors (GDAs) are rarely reported due to the dearth of GDAs with hypsochromic absorption (absorption onset < 850 nm) and good crystallinity. Herein, two hypsochromic GDAs are proposed with different fluorination degrees, namely DY4FO-V and DY6FO-V, and process a systematic study of hypsochromic acceptor materials from the small molecule to dimers and polymer. Interestingly, both hypsochromic GDAs possess better crystallinity, thus faster carrier transport and suppress recombination than small-molecule and polymer acceptor-based devices. With extra fluorination, PM6:DY6FO-V exhibits higher external quantum efficiency response and tighter packing compared with PM6:DY4FO-V. As a result, PM6:DY6FO-V delivers a champion efficiency over 29% under a LED illumination of 2000 lux (2600 k), positioning it the highest values for GDA-based IOPVs. Meanwhile, the high glass transition temperature of DY6FO-V endowed corresponding devices with great photostability and enhanced mechanical stability in flexible devices, demonstrating the feasibility of practical applications of the DY6FO-V-based IOPVs. This research underscores the huge potential of developing hypsochromic GDAs for highly efficient IOPVs with superior stability.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e12690\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202512690\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202512690","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

室内有机光伏(IOPVs)是一种新兴的LED光回收技术,在物联网室内离网生态系统等领域具有广阔的应用前景。然而,基于巨二聚体受体(GDAs)的高效稳定的iopv很少被报道,因为缺乏具有亚色吸收(吸收起始时间< 850 nm)和良好结晶度的GDAs。本文提出了两种不同氟化度的亚显色GDAs DY4FO-V和DY6FO-V,并对亚显色受体材料从小分子到二聚体和聚合物进行了系统的研究。有趣的是,与基于小分子和聚合物受体的器件相比,这两种亚色GDAs具有更好的结晶度,从而更快的载流子运输和抑制重组。与PM6:DY4FO-V相比,额外氟化后,PM6:DY6FO-V表现出更高的外量子效率响应和更紧密的包装。因此,PM6:DY6FO-V在2000勒克斯(2600 k)的LED照明下提供了超过29%的冠军效率,使其成为基于gda的iopv的最高值。同时,DY6FO-V的高玻璃化转变温度赋予了相应器件良好的光稳定性,并增强了柔性器件的机械稳定性,证明了基于DY6FO-V的iopv实际应用的可行性。这项研究强调了开发具有高稳定性的高效iopv的亚色GDAs的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indoor Organic Photovoltaics with Over 29% Efficiency and Great Stability Enabled by Giant Dimeric Acceptors with Hypsochromic Absorption and High Glass Transition Temperature.

Indoor organic photovoltaics (IOPVs) are an emerging LED light recycling technology with promising applications such as indoor off-grid ecosystem for the Internet of Things. However, efficient and stable IOPVs based on giant dimeric acceptors (GDAs) are rarely reported due to the dearth of GDAs with hypsochromic absorption (absorption onset < 850 nm) and good crystallinity. Herein, two hypsochromic GDAs are proposed with different fluorination degrees, namely DY4FO-V and DY6FO-V, and process a systematic study of hypsochromic acceptor materials from the small molecule to dimers and polymer. Interestingly, both hypsochromic GDAs possess better crystallinity, thus faster carrier transport and suppress recombination than small-molecule and polymer acceptor-based devices. With extra fluorination, PM6:DY6FO-V exhibits higher external quantum efficiency response and tighter packing compared with PM6:DY4FO-V. As a result, PM6:DY6FO-V delivers a champion efficiency over 29% under a LED illumination of 2000 lux (2600 k), positioning it the highest values for GDA-based IOPVs. Meanwhile, the high glass transition temperature of DY6FO-V endowed corresponding devices with great photostability and enhanced mechanical stability in flexible devices, demonstrating the feasibility of practical applications of the DY6FO-V-based IOPVs. This research underscores the huge potential of developing hypsochromic GDAs for highly efficient IOPVs with superior stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信