Sophie Boswell, Thomas Neukirch, Anton Artemyev, Ivan Vasko, Oliver Allanson
{"title":"无碰撞的准中性太阳风电流片模型。","authors":"Sophie Boswell, Thomas Neukirch, Anton Artemyev, Ivan Vasko, Oliver Allanson","doi":"10.1007/s11207-025-02551-8","DOIUrl":null,"url":null,"abstract":"<div><p>In situ measurements of kinetic scale current sheets in the solar wind show that they are often approximately force-free although the plasma <span>\\(\\beta\\)</span> is of order one. They frequently display systematic asymmetric and anti-correlated spatial variations of their particle density and temperature across the current sheet, leaving the plasma pressure essentially uniform. These observations of asymmetries have previously been modelled theoretically by adding additional terms to both the ion and electron distribution functions of self-consistent force-free collisionless current sheet models with constant density and temperature profiles. In this article we present the results of a modification of these models in which only the electron distribution function has an additional term, whereas the ion distribution function is kept as a thermal (Maxwellian) distribution function. In this case the nonlinear quasineutrality condition no longer has a simple analytical solution and therefore has to be solved alongside Ampère’s law. We find that while the magnetic field remains approximately force-free, the non-zero quasineutral electric field gives rise to an additional spatial substructure of the plasma density inside the current sheet. We briefly discuss the potential relation between our theoretical findings and current sheet observations.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 10","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12518478/pdf/","citationCount":"0","resultStr":"{\"title\":\"Models of Collisionless Quasineutral Solar Wind Current Sheets\",\"authors\":\"Sophie Boswell, Thomas Neukirch, Anton Artemyev, Ivan Vasko, Oliver Allanson\",\"doi\":\"10.1007/s11207-025-02551-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In situ measurements of kinetic scale current sheets in the solar wind show that they are often approximately force-free although the plasma <span>\\\\(\\\\beta\\\\)</span> is of order one. They frequently display systematic asymmetric and anti-correlated spatial variations of their particle density and temperature across the current sheet, leaving the plasma pressure essentially uniform. These observations of asymmetries have previously been modelled theoretically by adding additional terms to both the ion and electron distribution functions of self-consistent force-free collisionless current sheet models with constant density and temperature profiles. In this article we present the results of a modification of these models in which only the electron distribution function has an additional term, whereas the ion distribution function is kept as a thermal (Maxwellian) distribution function. In this case the nonlinear quasineutrality condition no longer has a simple analytical solution and therefore has to be solved alongside Ampère’s law. We find that while the magnetic field remains approximately force-free, the non-zero quasineutral electric field gives rise to an additional spatial substructure of the plasma density inside the current sheet. We briefly discuss the potential relation between our theoretical findings and current sheet observations.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"300 10\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12518478/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-025-02551-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02551-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Models of Collisionless Quasineutral Solar Wind Current Sheets
In situ measurements of kinetic scale current sheets in the solar wind show that they are often approximately force-free although the plasma \(\beta\) is of order one. They frequently display systematic asymmetric and anti-correlated spatial variations of their particle density and temperature across the current sheet, leaving the plasma pressure essentially uniform. These observations of asymmetries have previously been modelled theoretically by adding additional terms to both the ion and electron distribution functions of self-consistent force-free collisionless current sheet models with constant density and temperature profiles. In this article we present the results of a modification of these models in which only the electron distribution function has an additional term, whereas the ion distribution function is kept as a thermal (Maxwellian) distribution function. In this case the nonlinear quasineutrality condition no longer has a simple analytical solution and therefore has to be solved alongside Ampère’s law. We find that while the magnetic field remains approximately force-free, the non-zero quasineutral electric field gives rise to an additional spatial substructure of the plasma density inside the current sheet. We briefly discuss the potential relation between our theoretical findings and current sheet observations.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.