生物质碳阳极优化炭化钠离子电池稳定性和长周期性能

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Sherif Hegazy, Chandrasekar M. Subramaniyam, Ahmed Abdelrahim, Rafal Sliz, Tao Hu, Sari Tuomikoski, Ulla Lassi, Flaviano García-Alvarado, Varsha Srivastava
{"title":"生物质碳阳极优化炭化钠离子电池稳定性和长周期性能","authors":"Sherif Hegazy,&nbsp;Chandrasekar M. Subramaniyam,&nbsp;Ahmed Abdelrahim,&nbsp;Rafal Sliz,&nbsp;Tao Hu,&nbsp;Sari Tuomikoski,&nbsp;Ulla Lassi,&nbsp;Flaviano García-Alvarado,&nbsp;Varsha Srivastava","doi":"10.1002/celc.202500195","DOIUrl":null,"url":null,"abstract":"<p>This study presents the synthesis of biomass-derived carbon-metal organic framework (C-MOF) using modified sawdust as a sustainable precursor and elucidates its electrochemical performance as an anode material for sodium-ion batteries (SIBs). Optimization at a pyrolysis temperature of 1000 °C with 7.5% catalyst concentration, C-MOF achieves a high surface area of 312 m<sup>−2 </sup>g<sup>−1</sup> and electrical conductivity of 28 S cm<sup>−1</sup>, contributing to its long cycling electrochemical performance compared to commercial hard carbon (HC). The C-MOF delivers a maximum discharge capacity of 348.5 mAh g<sup>−1</sup> at 25 mA g<sup>−1</sup> and exhibits an outstanding cycling stability over 600 cycles with minimal degradation. Electrochemical techniques (cyclic voltammetry, impedance, and galvanostatic charge–discharge) reveal efficient sodium-ion intercalation and favorable ion diffusion characteristics within the porous C-MOF structure. These findings position C-MOF as a promising, sustainable, and long-standing anode material for advanced SIB applications, offering enhanced rate capability, durability, and effective sodium-ion kinetics.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 20","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500195","citationCount":"0","resultStr":"{\"title\":\"Optimized Carbonization of Biomass-Derived Carbon Anodes for Stable and Long-Cycle Sodium-Ion Battery Performance\",\"authors\":\"Sherif Hegazy,&nbsp;Chandrasekar M. Subramaniyam,&nbsp;Ahmed Abdelrahim,&nbsp;Rafal Sliz,&nbsp;Tao Hu,&nbsp;Sari Tuomikoski,&nbsp;Ulla Lassi,&nbsp;Flaviano García-Alvarado,&nbsp;Varsha Srivastava\",\"doi\":\"10.1002/celc.202500195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents the synthesis of biomass-derived carbon-metal organic framework (C-MOF) using modified sawdust as a sustainable precursor and elucidates its electrochemical performance as an anode material for sodium-ion batteries (SIBs). Optimization at a pyrolysis temperature of 1000 °C with 7.5% catalyst concentration, C-MOF achieves a high surface area of 312 m<sup>−2 </sup>g<sup>−1</sup> and electrical conductivity of 28 S cm<sup>−1</sup>, contributing to its long cycling electrochemical performance compared to commercial hard carbon (HC). The C-MOF delivers a maximum discharge capacity of 348.5 mAh g<sup>−1</sup> at 25 mA g<sup>−1</sup> and exhibits an outstanding cycling stability over 600 cycles with minimal degradation. Electrochemical techniques (cyclic voltammetry, impedance, and galvanostatic charge–discharge) reveal efficient sodium-ion intercalation and favorable ion diffusion characteristics within the porous C-MOF structure. These findings position C-MOF as a promising, sustainable, and long-standing anode material for advanced SIB applications, offering enhanced rate capability, durability, and effective sodium-ion kinetics.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 20\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500195\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500195\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500195","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

本研究以改性木屑为前驱体合成了生物质衍生的碳-金属有机骨架(C-MOF),并阐明了其作为钠离子电池(sib)负极材料的电化学性能。优化后的热解温度为1000℃,催化剂浓度为7.5%,C- mof的表面积为312 m−2 g−1,电导率为28 S cm−1,与商业硬碳(HC)相比,其循环电化学性能较长。C-MOF在25 mA g - 1时的最大放电容量为348.5 mAh g - 1,并且在600次循环中表现出出色的循环稳定性,降解最小。电化学技术(循环伏安法、阻抗法和恒流充放电法)揭示了多孔C-MOF结构中有效的钠离子嵌入和良好的离子扩散特性。这些发现将C-MOF定位为一种有前途的、可持续的、长期存在的阳极材料,用于先进的SIB应用,具有增强的速率能力、耐久性和有效的钠离子动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimized Carbonization of Biomass-Derived Carbon Anodes for Stable and Long-Cycle Sodium-Ion Battery Performance

Optimized Carbonization of Biomass-Derived Carbon Anodes for Stable and Long-Cycle Sodium-Ion Battery Performance

This study presents the synthesis of biomass-derived carbon-metal organic framework (C-MOF) using modified sawdust as a sustainable precursor and elucidates its electrochemical performance as an anode material for sodium-ion batteries (SIBs). Optimization at a pyrolysis temperature of 1000 °C with 7.5% catalyst concentration, C-MOF achieves a high surface area of 312 m−2 g−1 and electrical conductivity of 28 S cm−1, contributing to its long cycling electrochemical performance compared to commercial hard carbon (HC). The C-MOF delivers a maximum discharge capacity of 348.5 mAh g−1 at 25 mA g−1 and exhibits an outstanding cycling stability over 600 cycles with minimal degradation. Electrochemical techniques (cyclic voltammetry, impedance, and galvanostatic charge–discharge) reveal efficient sodium-ion intercalation and favorable ion diffusion characteristics within the porous C-MOF structure. These findings position C-MOF as a promising, sustainable, and long-standing anode material for advanced SIB applications, offering enhanced rate capability, durability, and effective sodium-ion kinetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信