Muhzamil A. Khan, Elena Bernalte, Matthew J. Whittingham, Lilian Slimani, Karen K. L. Augusto, Robert D. Crapnell, Craig E. Banks
{"title":"用于在增材制造电极上创建定制表面结构的激光雕刻打印床","authors":"Muhzamil A. Khan, Elena Bernalte, Matthew J. Whittingham, Lilian Slimani, Karen K. L. Augusto, Robert D. Crapnell, Craig E. Banks","doi":"10.1002/celc.202500234","DOIUrl":null,"url":null,"abstract":"<p>Moving from planar electrodes to unique surface architectures can produce significant improvements in electrochemical performance. Herein, we report the inclusions of unique microstructures fabricated onto the electrode surface through printing them onto laser-engraved print beds modified with different patterns (lines, crosses, circles, waves, and unmodified surfaces). Unique surface architectures were successfully produced on the surface of additive manufactured working electrodes printed from both commercial and bespoke conductive poly(lactic acid) and bespoke poly(propylene) (B-PP) filaments. Within both poly(lactic acid) filaments, minimal alteration in performance was seen, proposed to be due to the ingress of solution negating the surface architecture. For the B-PP, which do not suffer from solution ingress, significant improvements in peak current and electrochemical area were found for all surface architectures against both inner and outer sphere redox probes, with a cross architecture producing the largest improvement. This was corroborated in the electroanalytical application, with electrodes with crosses surface architecture producing a 3-fold improvement in sensitivity, limit of detection, and limit of quantification when compared to electrodes with no additional surface architecture for the detection of acetaminophen. This work shows improvements in the electrochemical performance of additive manufactured electrodes can be achieved through simply modifying the print bed, without alterations to print files or post-print modification methods.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 20","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500234","citationCount":"0","resultStr":"{\"title\":\"Laser-Engraved Print Beds for Creating Bespoke Surface Architectures on Additive Manufactured Electrodes\",\"authors\":\"Muhzamil A. Khan, Elena Bernalte, Matthew J. Whittingham, Lilian Slimani, Karen K. L. Augusto, Robert D. Crapnell, Craig E. Banks\",\"doi\":\"10.1002/celc.202500234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Moving from planar electrodes to unique surface architectures can produce significant improvements in electrochemical performance. Herein, we report the inclusions of unique microstructures fabricated onto the electrode surface through printing them onto laser-engraved print beds modified with different patterns (lines, crosses, circles, waves, and unmodified surfaces). Unique surface architectures were successfully produced on the surface of additive manufactured working electrodes printed from both commercial and bespoke conductive poly(lactic acid) and bespoke poly(propylene) (B-PP) filaments. Within both poly(lactic acid) filaments, minimal alteration in performance was seen, proposed to be due to the ingress of solution negating the surface architecture. For the B-PP, which do not suffer from solution ingress, significant improvements in peak current and electrochemical area were found for all surface architectures against both inner and outer sphere redox probes, with a cross architecture producing the largest improvement. This was corroborated in the electroanalytical application, with electrodes with crosses surface architecture producing a 3-fold improvement in sensitivity, limit of detection, and limit of quantification when compared to electrodes with no additional surface architecture for the detection of acetaminophen. This work shows improvements in the electrochemical performance of additive manufactured electrodes can be achieved through simply modifying the print bed, without alterations to print files or post-print modification methods.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 20\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500234\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500234\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500234","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Laser-Engraved Print Beds for Creating Bespoke Surface Architectures on Additive Manufactured Electrodes
Moving from planar electrodes to unique surface architectures can produce significant improvements in electrochemical performance. Herein, we report the inclusions of unique microstructures fabricated onto the electrode surface through printing them onto laser-engraved print beds modified with different patterns (lines, crosses, circles, waves, and unmodified surfaces). Unique surface architectures were successfully produced on the surface of additive manufactured working electrodes printed from both commercial and bespoke conductive poly(lactic acid) and bespoke poly(propylene) (B-PP) filaments. Within both poly(lactic acid) filaments, minimal alteration in performance was seen, proposed to be due to the ingress of solution negating the surface architecture. For the B-PP, which do not suffer from solution ingress, significant improvements in peak current and electrochemical area were found for all surface architectures against both inner and outer sphere redox probes, with a cross architecture producing the largest improvement. This was corroborated in the electroanalytical application, with electrodes with crosses surface architecture producing a 3-fold improvement in sensitivity, limit of detection, and limit of quantification when compared to electrodes with no additional surface architecture for the detection of acetaminophen. This work shows improvements in the electrochemical performance of additive manufactured electrodes can be achieved through simply modifying the print bed, without alterations to print files or post-print modification methods.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.