Riley Havel, Daniel E. Ibarra, Rainer Bartoschewitz, Gerrit Budde
{"title":"三氧同位素分析中陨石浸出过程的询问","authors":"Riley Havel, Daniel E. Ibarra, Rainer Bartoschewitz, Gerrit Budde","doi":"10.1111/maps.70039","DOIUrl":null,"url":null,"abstract":"<p>Triple oxygen isotope analyses of meteorites are a fundamental tool for classifying meteorites and investigating early solar system processes. However, its utility can be significantly compromised by terrestrial oxygen contamination during weathering processes on Earth's surface. Aiming to restore the original bulk oxygen isotope composition of meteorites through the removal of terrestrial weathering products, leaching procedures with hydrochloric acid (HCl) or ethanolamine thioglycollate (EATG) are often employed, but their effects remain poorly understood. Therefore, here we obtained high-precision triple oxygen isotope data for a comprehensive set of meteorites to systematically evaluate the efficacy and consequences of these leaching methods as a function of meteorite group, weathering grade, petrologic type, and find/fall location and status. Our data for untreated and leached bulk meteorite powders show that leaching can cause shifts of several permil in <sup>18</sup>O/<sup>16</sup>O and <sup>17</sup>O/<sup>16</sup>O in aqueously altered and pristine chondrites, and lower magnitude shifts in thermally metamorphosed chondrites and achondrites. Though some shifts can be explained by removal of terrestrial weathering products, many suggest the inadvertent removal of indigenous phases. As such, this study highlights the benefits and disadvantages of leaching methods for meteorites, which can be best assessed by analyses of both untreated and HCl/EATG-leached aliquots.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 10","pages":"2311-2333"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interrogating leaching procedures of meteorites for triple oxygen isotope analyses\",\"authors\":\"Riley Havel, Daniel E. Ibarra, Rainer Bartoschewitz, Gerrit Budde\",\"doi\":\"10.1111/maps.70039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Triple oxygen isotope analyses of meteorites are a fundamental tool for classifying meteorites and investigating early solar system processes. However, its utility can be significantly compromised by terrestrial oxygen contamination during weathering processes on Earth's surface. Aiming to restore the original bulk oxygen isotope composition of meteorites through the removal of terrestrial weathering products, leaching procedures with hydrochloric acid (HCl) or ethanolamine thioglycollate (EATG) are often employed, but their effects remain poorly understood. Therefore, here we obtained high-precision triple oxygen isotope data for a comprehensive set of meteorites to systematically evaluate the efficacy and consequences of these leaching methods as a function of meteorite group, weathering grade, petrologic type, and find/fall location and status. Our data for untreated and leached bulk meteorite powders show that leaching can cause shifts of several permil in <sup>18</sup>O/<sup>16</sup>O and <sup>17</sup>O/<sup>16</sup>O in aqueously altered and pristine chondrites, and lower magnitude shifts in thermally metamorphosed chondrites and achondrites. Though some shifts can be explained by removal of terrestrial weathering products, many suggest the inadvertent removal of indigenous phases. As such, this study highlights the benefits and disadvantages of leaching methods for meteorites, which can be best assessed by analyses of both untreated and HCl/EATG-leached aliquots.</p>\",\"PeriodicalId\":18555,\"journal\":{\"name\":\"Meteoritics & Planetary Science\",\"volume\":\"60 10\",\"pages\":\"2311-2333\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteoritics & Planetary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maps.70039\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.70039","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Interrogating leaching procedures of meteorites for triple oxygen isotope analyses
Triple oxygen isotope analyses of meteorites are a fundamental tool for classifying meteorites and investigating early solar system processes. However, its utility can be significantly compromised by terrestrial oxygen contamination during weathering processes on Earth's surface. Aiming to restore the original bulk oxygen isotope composition of meteorites through the removal of terrestrial weathering products, leaching procedures with hydrochloric acid (HCl) or ethanolamine thioglycollate (EATG) are often employed, but their effects remain poorly understood. Therefore, here we obtained high-precision triple oxygen isotope data for a comprehensive set of meteorites to systematically evaluate the efficacy and consequences of these leaching methods as a function of meteorite group, weathering grade, petrologic type, and find/fall location and status. Our data for untreated and leached bulk meteorite powders show that leaching can cause shifts of several permil in 18O/16O and 17O/16O in aqueously altered and pristine chondrites, and lower magnitude shifts in thermally metamorphosed chondrites and achondrites. Though some shifts can be explained by removal of terrestrial weathering products, many suggest the inadvertent removal of indigenous phases. As such, this study highlights the benefits and disadvantages of leaching methods for meteorites, which can be best assessed by analyses of both untreated and HCl/EATG-leached aliquots.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.