从金属锂阳极中非活性锂的形成到再活化

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Abdolkhaled Mohammadi, Pedram Ghorbanzade, Juan Miguel López del Amo, Laure Monconduit, Lorenzo Stievano
{"title":"从金属锂阳极中非活性锂的形成到再活化","authors":"Abdolkhaled Mohammadi,&nbsp;Pedram Ghorbanzade,&nbsp;Juan Miguel López del Amo,&nbsp;Laure Monconduit,&nbsp;Lorenzo Stievano","doi":"10.1002/celc.202500242","DOIUrl":null,"url":null,"abstract":"<p>Inactive lithium (Li), often referred to as dead or isolated Li, consists of electrochemically disconnected metallic Li and Li-containing compounds trapped within or beneath the solid–electrolyte interphase (SEI). It is widely recognized as a primary failure mode in lithium-metal batteries (LMBs), contributing to performance degradation, safety concerns, and limited scalability. This review outlines the sequential processes of Li nucleation, growth of high-surface-area Li, and the formation of inactive Li, while identifying the key physicochemical factors influencing each stage. Li nucleation is governed by current density, temperature, electrolyte formulation, and interfacial properties, which collectively dictate the uniformity of Li plating. High-surface-area Li growth introduces mechanical and chemical instabilities, fractures and uneven stripping of these filamentous structures lead to Li isolation and inactive Li accumulation. To address these challenges, advanced characterization techniques, including solid-state nuclear magnetic resonance spectroscopy, titration gas chromatography, inductively coupled plasma optical emission spectroscopy, and operando synchrotron X-ray diffraction, offer critical insights into the formation and progression of inactive Li. Emerging reactivation strategies, such as redox mediators and tailored cycling protocols, show promise in recovering lost capacity. This review presents key mechanistic factors, advanced diagnostic tools, and emerging reactivation strategies to support a deeper understanding and control of failure mechanisms in LMBs systems.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 20","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500242","citationCount":"0","resultStr":"{\"title\":\"From Formation to Reactivation of Inactive Lithium in Lithium Metal Anodes\",\"authors\":\"Abdolkhaled Mohammadi,&nbsp;Pedram Ghorbanzade,&nbsp;Juan Miguel López del Amo,&nbsp;Laure Monconduit,&nbsp;Lorenzo Stievano\",\"doi\":\"10.1002/celc.202500242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inactive lithium (Li), often referred to as dead or isolated Li, consists of electrochemically disconnected metallic Li and Li-containing compounds trapped within or beneath the solid–electrolyte interphase (SEI). It is widely recognized as a primary failure mode in lithium-metal batteries (LMBs), contributing to performance degradation, safety concerns, and limited scalability. This review outlines the sequential processes of Li nucleation, growth of high-surface-area Li, and the formation of inactive Li, while identifying the key physicochemical factors influencing each stage. Li nucleation is governed by current density, temperature, electrolyte formulation, and interfacial properties, which collectively dictate the uniformity of Li plating. High-surface-area Li growth introduces mechanical and chemical instabilities, fractures and uneven stripping of these filamentous structures lead to Li isolation and inactive Li accumulation. To address these challenges, advanced characterization techniques, including solid-state nuclear magnetic resonance spectroscopy, titration gas chromatography, inductively coupled plasma optical emission spectroscopy, and operando synchrotron X-ray diffraction, offer critical insights into the formation and progression of inactive Li. Emerging reactivation strategies, such as redox mediators and tailored cycling protocols, show promise in recovering lost capacity. This review presents key mechanistic factors, advanced diagnostic tools, and emerging reactivation strategies to support a deeper understanding and control of failure mechanisms in LMBs systems.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 20\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500242\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500242\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500242","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

非活性锂(Li),通常被称为死锂或分离锂,由电化学上断开的金属锂和被困在固体电解质间相(SEI)内部或下方的含锂化合物组成。它被广泛认为是锂金属电池(lmb)的主要失效模式,会导致性能下降、安全问题和有限的可扩展性。本文概述了锂成核、高表面积锂生长和非活性锂形成的顺序过程,并确定了影响每个阶段的关键物理化学因素。锂的成核受电流密度、温度、电解质配方和界面性质的影响,这些因素共同决定了镀锂的均匀性。高表面积的锂生长带来了机械和化学的不稳定性,这些丝状结构的断裂和不均匀剥离导致了锂的隔离和不活跃的锂积累。为了应对这些挑战,先进的表征技术,包括固态核磁共振光谱、滴定气相色谱、电感耦合等离子体光学发射光谱和operando同步加速器x射线衍射,为非活性锂的形成和发展提供了重要的见解。新兴的再激活策略,如氧化还原介质和量身定制的循环方案,在恢复失去的容量方面表现出了希望。本文综述了关键的机制因素、先进的诊断工具和新兴的再激活策略,以支持对lmb系统失效机制的更深入理解和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

From Formation to Reactivation of Inactive Lithium in Lithium Metal Anodes

From Formation to Reactivation of Inactive Lithium in Lithium Metal Anodes

Inactive lithium (Li), often referred to as dead or isolated Li, consists of electrochemically disconnected metallic Li and Li-containing compounds trapped within or beneath the solid–electrolyte interphase (SEI). It is widely recognized as a primary failure mode in lithium-metal batteries (LMBs), contributing to performance degradation, safety concerns, and limited scalability. This review outlines the sequential processes of Li nucleation, growth of high-surface-area Li, and the formation of inactive Li, while identifying the key physicochemical factors influencing each stage. Li nucleation is governed by current density, temperature, electrolyte formulation, and interfacial properties, which collectively dictate the uniformity of Li plating. High-surface-area Li growth introduces mechanical and chemical instabilities, fractures and uneven stripping of these filamentous structures lead to Li isolation and inactive Li accumulation. To address these challenges, advanced characterization techniques, including solid-state nuclear magnetic resonance spectroscopy, titration gas chromatography, inductively coupled plasma optical emission spectroscopy, and operando synchrotron X-ray diffraction, offer critical insights into the formation and progression of inactive Li. Emerging reactivation strategies, such as redox mediators and tailored cycling protocols, show promise in recovering lost capacity. This review presents key mechanistic factors, advanced diagnostic tools, and emerging reactivation strategies to support a deeper understanding and control of failure mechanisms in LMBs systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信