{"title":"构建高性能锌空气电池用铁氮共掺杂多孔碳催化剂的双模板辅助热解策略","authors":"Hai Song, Tianyu Hou, Xuan Xie, Hui Peng","doi":"10.1002/celc.202500269","DOIUrl":null,"url":null,"abstract":"<p>Zinc–air batteries (ZABs) have attracted much attention because of their high energy density, low cost, and excellent safety. However, developing inexpensive oxygen electrocatalysts with stable performance and fast reaction kinetics remains challenging. Herein, a simple and versatile dual-template-assisted pyrolysis strategy to prepare iron-nitrogen co-doped porous carbon (R-Fe-N-C) catalysts using magnesium carbonate hydroxide (Mg<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub>) as a self-generated template, ferrocene as an iron source, ethylenediaminetetraacetic acid disodium zinc salt (EDTA-Na<sub>2</sub>Zn) as a carbon source, and 1,10-phenanthroline as a nitrogen source is proposed. During the pyrolysis process, Mg<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub> can be decomposed to generate MgO nanoparticles as self-generated hard template embedded in the carbon skeleton, and finally removed by acid etching to form a rich mesoporous structure. Meanwhile, the Zn species in EDTA-Na<sub>2</sub>Zn can form rich micropores after high-temperature evaporation. Thus, the R-Fe-N-C catalyst reaches a high half-wave potential of 0.874 V and good stability, which is better than commercial Pt/C. In addition, ZABs with R-Fe-N-C as air cathode exhibit high open circuit voltage of 1.52 V and a maximum power density of 122.9 mW cm<sup>−2</sup>, as well as good cycle stability over 110 hr. The proposed synthesis strategy provides an effective way for designing metal-heteroatomic-doped porous carbon materials.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 20","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500269","citationCount":"0","resultStr":"{\"title\":\"Dual-Template-Assisted Pyrolysis Strategy to Construct Iron-Nitrogen Co-Doped Porous Carbon Catalysts for High-Performance Zn–Air Batteries\",\"authors\":\"Hai Song, Tianyu Hou, Xuan Xie, Hui Peng\",\"doi\":\"10.1002/celc.202500269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Zinc–air batteries (ZABs) have attracted much attention because of their high energy density, low cost, and excellent safety. However, developing inexpensive oxygen electrocatalysts with stable performance and fast reaction kinetics remains challenging. Herein, a simple and versatile dual-template-assisted pyrolysis strategy to prepare iron-nitrogen co-doped porous carbon (R-Fe-N-C) catalysts using magnesium carbonate hydroxide (Mg<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub>) as a self-generated template, ferrocene as an iron source, ethylenediaminetetraacetic acid disodium zinc salt (EDTA-Na<sub>2</sub>Zn) as a carbon source, and 1,10-phenanthroline as a nitrogen source is proposed. During the pyrolysis process, Mg<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub> can be decomposed to generate MgO nanoparticles as self-generated hard template embedded in the carbon skeleton, and finally removed by acid etching to form a rich mesoporous structure. Meanwhile, the Zn species in EDTA-Na<sub>2</sub>Zn can form rich micropores after high-temperature evaporation. Thus, the R-Fe-N-C catalyst reaches a high half-wave potential of 0.874 V and good stability, which is better than commercial Pt/C. In addition, ZABs with R-Fe-N-C as air cathode exhibit high open circuit voltage of 1.52 V and a maximum power density of 122.9 mW cm<sup>−2</sup>, as well as good cycle stability over 110 hr. The proposed synthesis strategy provides an effective way for designing metal-heteroatomic-doped porous carbon materials.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 20\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500269\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500269\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500269","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
锌空气电池(ZABs)以其高能量密度、低成本和优异的安全性而备受关注。然而,开发性能稳定、反应速度快的廉价氧电催化剂仍然是一个挑战。本文提出了一种简单通用的双模板辅助热解策略,以氢氧化镁(Mg2(OH)2CO3)为自生成模板,二茂铁为铁源,乙二胺四乙酸二钠锌盐(EDTA-Na2Zn)为碳源,1,10-菲罗啉为氮源,制备铁氮共掺杂多孔碳(R-Fe-N-C)催化剂。在热解过程中,Mg2(OH)2CO3可以分解生成MgO纳米颗粒,作为自生成的硬模板嵌入碳骨架中,最后通过酸蚀去除,形成丰富的介孔结构。同时,EDTA-Na2Zn中的Zn组分经高温蒸发后可形成丰富的微孔。因此,R-Fe-N-C催化剂达到了0.874 V的高半波电位和良好的稳定性,优于商用Pt/C。此外,以R-Fe-N-C为空气阴极的ZABs具有1.52 V的高开路电压和122.9 mW cm - 2的最大功率密度,以及110 hr以上的良好循环稳定性。所提出的合成策略为设计金属杂原子掺杂多孔碳材料提供了有效途径。
Dual-Template-Assisted Pyrolysis Strategy to Construct Iron-Nitrogen Co-Doped Porous Carbon Catalysts for High-Performance Zn–Air Batteries
Zinc–air batteries (ZABs) have attracted much attention because of their high energy density, low cost, and excellent safety. However, developing inexpensive oxygen electrocatalysts with stable performance and fast reaction kinetics remains challenging. Herein, a simple and versatile dual-template-assisted pyrolysis strategy to prepare iron-nitrogen co-doped porous carbon (R-Fe-N-C) catalysts using magnesium carbonate hydroxide (Mg2(OH)2CO3) as a self-generated template, ferrocene as an iron source, ethylenediaminetetraacetic acid disodium zinc salt (EDTA-Na2Zn) as a carbon source, and 1,10-phenanthroline as a nitrogen source is proposed. During the pyrolysis process, Mg2(OH)2CO3 can be decomposed to generate MgO nanoparticles as self-generated hard template embedded in the carbon skeleton, and finally removed by acid etching to form a rich mesoporous structure. Meanwhile, the Zn species in EDTA-Na2Zn can form rich micropores after high-temperature evaporation. Thus, the R-Fe-N-C catalyst reaches a high half-wave potential of 0.874 V and good stability, which is better than commercial Pt/C. In addition, ZABs with R-Fe-N-C as air cathode exhibit high open circuit voltage of 1.52 V and a maximum power density of 122.9 mW cm−2, as well as good cycle stability over 110 hr. The proposed synthesis strategy provides an effective way for designing metal-heteroatomic-doped porous carbon materials.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.