l -丙氨酸功能化氧化富勒烯和MIL101@Fe mof绿色电极在NaCl电解质中对映选择性电有机羧基化的研究

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zaman Abdalhussein Ibadi Alarsidhee, Matheel D. Al-Sabti, Majid S. Jabir, Egambergan Xudaynazarov, Amer Alhaj Zen, Elyor Berdimurodov, Ilyos Eliboev, Usmonova Lola Mallaevna, Mirjalol Ismoilov Ruziboy Ugli, Abdulrahman A. Almehizia, Mohammed B. Alqaraguly, Iman I. Jabbar
{"title":"l -丙氨酸功能化氧化富勒烯和MIL101@Fe mof绿色电极在NaCl电解质中对映选择性电有机羧基化的研究","authors":"Zaman Abdalhussein Ibadi Alarsidhee,&nbsp;Matheel D. Al-Sabti,&nbsp;Majid S. Jabir,&nbsp;Egambergan Xudaynazarov,&nbsp;Amer Alhaj Zen,&nbsp;Elyor Berdimurodov,&nbsp;Ilyos Eliboev,&nbsp;Usmonova Lola Mallaevna,&nbsp;Mirjalol Ismoilov Ruziboy Ugli,&nbsp;Abdulrahman A. Almehizia,&nbsp;Mohammed B. Alqaraguly,&nbsp;Iman I. Jabbar","doi":"10.1007/s11164-025-05746-7","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional synthetic methods for organic compounds are associated with significant environmental concerns, primarily due to the reliance on metal-based catalysts. Furthermore, the employment of toxic solvents combined with prolonged reaction durations presents substantial obstacles to the commercial scalability and practical application of these approaches. In this study, we developed a sustainable green electrode by functionalizing fullerene oxide with L-alanine and incorporating MIL-101@Fe metal–organic frameworks. This innovative approach is designed for enantioselective electro-organic carboxylation in a NaCl electrolyte. The study examines how the biocompatibility of L-alanine and the structural robustness of MIL-101@Fe enhance catalytic efficiency while maintaining environmental sustainability. Functionalizing fullerene oxide with L-alanine improves the electrode's selectivity for the desired enantiomers and increases electron transfer efficiency. The resulting catalytic substrate, oxC60-Ala-MIL101@Fe, was characterized employing various analytical techniques, including EDX, TGA, SEM, EDS, BET, CV, XPS, FT-IR, and DFT calculation to assess its morphology, thermal stability, elemental composition, surface area, and electrochemical behavior. To evaluate the electrode’s performance, we conducted the electro-organic carboxylation of ethylbenzene <b>1(a-l)</b> derivatives under electro-organic synthesis conditions, yielding various (R)-2-phenylpropanoic acids <b>4(a-l)</b> with excellent yields (92–97%). Optimal results were obtained at a current of 10 mA, over a duration of 2 h, and at room temperature and Ala-MIL101@Fe exhibited good performance for up to 9 cycles. The products were confirmed using <sup>1</sup>HNMR, CHN analysis, FT-IR spectroscopy, and melting point determination.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"51 11","pages":"6297 - 6333"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a green electrode based on fullerene oxide functionalized with L-alanine and MIL101@Fe MOFs for enantioselective electro-organic carboxylation in NaCl electrolyte\",\"authors\":\"Zaman Abdalhussein Ibadi Alarsidhee,&nbsp;Matheel D. Al-Sabti,&nbsp;Majid S. Jabir,&nbsp;Egambergan Xudaynazarov,&nbsp;Amer Alhaj Zen,&nbsp;Elyor Berdimurodov,&nbsp;Ilyos Eliboev,&nbsp;Usmonova Lola Mallaevna,&nbsp;Mirjalol Ismoilov Ruziboy Ugli,&nbsp;Abdulrahman A. Almehizia,&nbsp;Mohammed B. Alqaraguly,&nbsp;Iman I. Jabbar\",\"doi\":\"10.1007/s11164-025-05746-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conventional synthetic methods for organic compounds are associated with significant environmental concerns, primarily due to the reliance on metal-based catalysts. Furthermore, the employment of toxic solvents combined with prolonged reaction durations presents substantial obstacles to the commercial scalability and practical application of these approaches. In this study, we developed a sustainable green electrode by functionalizing fullerene oxide with L-alanine and incorporating MIL-101@Fe metal–organic frameworks. This innovative approach is designed for enantioselective electro-organic carboxylation in a NaCl electrolyte. The study examines how the biocompatibility of L-alanine and the structural robustness of MIL-101@Fe enhance catalytic efficiency while maintaining environmental sustainability. Functionalizing fullerene oxide with L-alanine improves the electrode's selectivity for the desired enantiomers and increases electron transfer efficiency. The resulting catalytic substrate, oxC60-Ala-MIL101@Fe, was characterized employing various analytical techniques, including EDX, TGA, SEM, EDS, BET, CV, XPS, FT-IR, and DFT calculation to assess its morphology, thermal stability, elemental composition, surface area, and electrochemical behavior. To evaluate the electrode’s performance, we conducted the electro-organic carboxylation of ethylbenzene <b>1(a-l)</b> derivatives under electro-organic synthesis conditions, yielding various (R)-2-phenylpropanoic acids <b>4(a-l)</b> with excellent yields (92–97%). Optimal results were obtained at a current of 10 mA, over a duration of 2 h, and at room temperature and Ala-MIL101@Fe exhibited good performance for up to 9 cycles. The products were confirmed using <sup>1</sup>HNMR, CHN analysis, FT-IR spectroscopy, and melting point determination.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":753,\"journal\":{\"name\":\"Research on Chemical Intermediates\",\"volume\":\"51 11\",\"pages\":\"6297 - 6333\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research on Chemical Intermediates\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11164-025-05746-7\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-025-05746-7","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的有机化合物合成方法与严重的环境问题有关,主要是由于对金属基催化剂的依赖。此外,有毒溶剂的使用和反应时间的延长给这些方法的商业可扩展性和实际应用带来了很大的障碍。在这项研究中,我们通过l -丙氨酸功能化氧化富勒烯并结合MIL-101@Fe金属有机框架,开发了一种可持续的绿色电极。这种创新的方法是为在NaCl电解质中对映选择性电有机羧基化而设计的。该研究考察了l -丙氨酸的生物相容性和MIL-101@Fe的结构稳健性如何在保持环境可持续性的同时提高催化效率。用l -丙氨酸功能化氧化富勒烯提高了电极对所期望的对映体的选择性,提高了电子传递效率。得到的催化底物oxC60-Ala-MIL101@Fe采用多种分析技术进行了表征,包括EDX、TGA、SEM、EDS、BET、CV、XPS、FT-IR和DFT计算,以评估其形貌、热稳定性、元素组成、表面积和电化学行为。为了评价电极的性能,我们在电有机合成条件下对乙苯1(a-l)衍生物进行了电有机羧化反应,得到了多种(R)-2-苯基丙酸4(a-l),产率为92-97%。在10 mA的电流下,在2小时的持续时间内,在室温和Ala-MIL101@Fe下获得了最佳结果,并且在9次循环中表现出良好的性能。用1HNMR、CHN分析、FT-IR光谱和熔点测定对产物进行了确证。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a green electrode based on fullerene oxide functionalized with L-alanine and MIL101@Fe MOFs for enantioselective electro-organic carboxylation in NaCl electrolyte

Conventional synthetic methods for organic compounds are associated with significant environmental concerns, primarily due to the reliance on metal-based catalysts. Furthermore, the employment of toxic solvents combined with prolonged reaction durations presents substantial obstacles to the commercial scalability and practical application of these approaches. In this study, we developed a sustainable green electrode by functionalizing fullerene oxide with L-alanine and incorporating MIL-101@Fe metal–organic frameworks. This innovative approach is designed for enantioselective electro-organic carboxylation in a NaCl electrolyte. The study examines how the biocompatibility of L-alanine and the structural robustness of MIL-101@Fe enhance catalytic efficiency while maintaining environmental sustainability. Functionalizing fullerene oxide with L-alanine improves the electrode's selectivity for the desired enantiomers and increases electron transfer efficiency. The resulting catalytic substrate, oxC60-Ala-MIL101@Fe, was characterized employing various analytical techniques, including EDX, TGA, SEM, EDS, BET, CV, XPS, FT-IR, and DFT calculation to assess its morphology, thermal stability, elemental composition, surface area, and electrochemical behavior. To evaluate the electrode’s performance, we conducted the electro-organic carboxylation of ethylbenzene 1(a-l) derivatives under electro-organic synthesis conditions, yielding various (R)-2-phenylpropanoic acids 4(a-l) with excellent yields (92–97%). Optimal results were obtained at a current of 10 mA, over a duration of 2 h, and at room temperature and Ala-MIL101@Fe exhibited good performance for up to 9 cycles. The products were confirmed using 1HNMR, CHN analysis, FT-IR spectroscopy, and melting point determination.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
18.20%
发文量
229
审稿时长
2.6 months
期刊介绍: Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry. The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信