多边形网格上Emden-Fowler模型的一致性虚元法

IF 2.1 3区 数学 Q2 MATHEMATICS, APPLIED
Zaffar Mehdi Dar, M. Arrutselvi, Chandru Muthusamy, Sundararajan Natarajan
{"title":"多边形网格上Emden-Fowler模型的一致性虚元法","authors":"Zaffar Mehdi Dar,&nbsp;M. Arrutselvi,&nbsp;Chandru Muthusamy,&nbsp;Sundararajan Natarajan","doi":"10.1007/s10444-025-10260-w","DOIUrl":null,"url":null,"abstract":"<div><p>The primary goal of this article is to propose an efficient virtual element method formulation for solving a two-dimensional time-fractional Emden-Fowler model. The virtual element technique is a generalization of the finite element approach to polygonal and polyhedral meshes in the Galerkin approximation framework. A fully discrete virtual element scheme is obtained by using a fractional version of the Grünwald-Letnikov approximation for the temporal discretization and the virtual element method for the spatial discretization. We establish the existence and uniqueness of the discrete solution, that is, the well-posedness of the approach. The error analysis and optimal convergence order with respect to the <span>\\(L^2-\\)</span>norm and the <span>\\(H^1-\\)</span>seminorm are presented. The numerical experiments validated the theoretical analysis and demonstrated the technique’s efficacy on convex and non-convex polygonal meshes.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A conforming virtual element method for Emden-Fowler model over polygonal meshes\",\"authors\":\"Zaffar Mehdi Dar,&nbsp;M. Arrutselvi,&nbsp;Chandru Muthusamy,&nbsp;Sundararajan Natarajan\",\"doi\":\"10.1007/s10444-025-10260-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The primary goal of this article is to propose an efficient virtual element method formulation for solving a two-dimensional time-fractional Emden-Fowler model. The virtual element technique is a generalization of the finite element approach to polygonal and polyhedral meshes in the Galerkin approximation framework. A fully discrete virtual element scheme is obtained by using a fractional version of the Grünwald-Letnikov approximation for the temporal discretization and the virtual element method for the spatial discretization. We establish the existence and uniqueness of the discrete solution, that is, the well-posedness of the approach. The error analysis and optimal convergence order with respect to the <span>\\\\(L^2-\\\\)</span>norm and the <span>\\\\(H^1-\\\\)</span>seminorm are presented. The numerical experiments validated the theoretical analysis and demonstrated the technique’s efficacy on convex and non-convex polygonal meshes.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"51 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-025-10260-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10260-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是提出一种求解二维时间分数型Emden-Fowler模型的有效虚元法。虚元技术是Galerkin近似框架下多边形和多面体网格有限元方法的推广。采用分数阶的gr nwald- letnikov近似进行时间离散,采用虚元法进行空间离散,得到了完全离散的虚元格式。我们建立了离散解的存在唯一性,即方法的适定性。给出了对\(L^2-\)范数和\(H^1-\)半模的误差分析和最优收敛阶。数值实验验证了理论分析的正确性,并验证了该方法在凸多边形和非凸多边形网格上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A conforming virtual element method for Emden-Fowler model over polygonal meshes

The primary goal of this article is to propose an efficient virtual element method formulation for solving a two-dimensional time-fractional Emden-Fowler model. The virtual element technique is a generalization of the finite element approach to polygonal and polyhedral meshes in the Galerkin approximation framework. A fully discrete virtual element scheme is obtained by using a fractional version of the Grünwald-Letnikov approximation for the temporal discretization and the virtual element method for the spatial discretization. We establish the existence and uniqueness of the discrete solution, that is, the well-posedness of the approach. The error analysis and optimal convergence order with respect to the \(L^2-\)norm and the \(H^1-\)seminorm are presented. The numerical experiments validated the theoretical analysis and demonstrated the technique’s efficacy on convex and non-convex polygonal meshes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信