s型碳掺杂石墨氮化碳/ZnIn2S4异质结对多菌灵光催化性能的合理设计

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Chao Liu, Yanyan Jiang, Yuan Wei, Shiming Jia, Huaide Liu, Ziyan Yu, Junfeng Sun, Zhiqi Kang, Guanghui Cheng, Gaofeng Shi, Guoying Wang
{"title":"s型碳掺杂石墨氮化碳/ZnIn2S4异质结对多菌灵光催化性能的合理设计","authors":"Chao Liu,&nbsp;Yanyan Jiang,&nbsp;Yuan Wei,&nbsp;Shiming Jia,&nbsp;Huaide Liu,&nbsp;Ziyan Yu,&nbsp;Junfeng Sun,&nbsp;Zhiqi Kang,&nbsp;Guanghui Cheng,&nbsp;Gaofeng Shi,&nbsp;Guoying Wang","doi":"10.1007/s11164-025-05723-0","DOIUrl":null,"url":null,"abstract":"<div><p>The synergistic combination of elemental doping and heterostructure engineering offers an effective strategy to overcome inherent limitations of conventional graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) in photocatalyst application, particularly insufficient active sites, rapid charge carrier recombination, and narrow light absorption. This study introduces carbon self-doping into g-C<sub>3</sub>N<sub>4</sub>, followed by self-assembly with band-matched ZnIn<sub>2</sub>S<sub>4</sub>(ZIS) to construct an S-scheme C-g-C<sub>3</sub>N<sub>4</sub>/ZnIn<sub>2</sub>S<sub>4</sub>(CCN@ZIS) heterojunction. Multimodal characterization confirms carbon incorporation modifies the band structure of g-C<sub>3</sub>N<sub>4</sub>, induces <i>n</i>–<i>π</i>* transitions, and creates defect/impurity levels, significantly enhancing light absorption. Crucially, the S-scheme charge transfer mechanism enables efficient separation of photogenerated carriers, substantially boosting photocatalytic performance. These structural optimizations enable the CCN@ZIS-2 composite to achieve 94.3% carbendazim (CBZ) degradation within 60 min—outperforming CCN and ZIS by factors of 1.19 and 1.31, respectively. This work provides novel insights for high-efficiency photocatalytic degradation of pesticide in water environment.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"51 11","pages":"6371 - 6392"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11164-025-05723-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Rational design of S-scheme carbon-doped graphitic carbon nitride/ZnIn2S4 heterojunction with enhanced photocatalytic performance for Carbendazim\",\"authors\":\"Chao Liu,&nbsp;Yanyan Jiang,&nbsp;Yuan Wei,&nbsp;Shiming Jia,&nbsp;Huaide Liu,&nbsp;Ziyan Yu,&nbsp;Junfeng Sun,&nbsp;Zhiqi Kang,&nbsp;Guanghui Cheng,&nbsp;Gaofeng Shi,&nbsp;Guoying Wang\",\"doi\":\"10.1007/s11164-025-05723-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The synergistic combination of elemental doping and heterostructure engineering offers an effective strategy to overcome inherent limitations of conventional graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) in photocatalyst application, particularly insufficient active sites, rapid charge carrier recombination, and narrow light absorption. This study introduces carbon self-doping into g-C<sub>3</sub>N<sub>4</sub>, followed by self-assembly with band-matched ZnIn<sub>2</sub>S<sub>4</sub>(ZIS) to construct an S-scheme C-g-C<sub>3</sub>N<sub>4</sub>/ZnIn<sub>2</sub>S<sub>4</sub>(CCN@ZIS) heterojunction. Multimodal characterization confirms carbon incorporation modifies the band structure of g-C<sub>3</sub>N<sub>4</sub>, induces <i>n</i>–<i>π</i>* transitions, and creates defect/impurity levels, significantly enhancing light absorption. Crucially, the S-scheme charge transfer mechanism enables efficient separation of photogenerated carriers, substantially boosting photocatalytic performance. These structural optimizations enable the CCN@ZIS-2 composite to achieve 94.3% carbendazim (CBZ) degradation within 60 min—outperforming CCN and ZIS by factors of 1.19 and 1.31, respectively. This work provides novel insights for high-efficiency photocatalytic degradation of pesticide in water environment.</p></div>\",\"PeriodicalId\":753,\"journal\":{\"name\":\"Research on Chemical Intermediates\",\"volume\":\"51 11\",\"pages\":\"6371 - 6392\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11164-025-05723-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research on Chemical Intermediates\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11164-025-05723-0\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-025-05723-0","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

元素掺杂与异质结构工程的协同结合为克服传统石墨氮化碳(g-C3N4)在光催化剂应用中的固有局限,特别是活性位点不足、载流子快速重组和光吸收窄等问题提供了有效的策略。本研究将碳自掺杂到g-C3N4中,然后与带匹配的ZnIn2S4(ZIS)自组装,构建了S-scheme C-g-C3N4/ZnIn2S4(CCN@ZIS)异质结。多模态表征证实,碳掺入改变了g-C3N4的能带结构,诱导了n -π *跃迁,并产生了缺陷/杂质能级,显著增强了光吸收。至关重要的是,S-scheme电荷转移机制能够有效分离光生载流子,从而大大提高光催化性能。这些结构优化使CCN@ZIS-2复合材料在60 min内达到94.3%的多菌肼(CBZ)降解率,比CCN和ZIS分别高出1.19和1.31倍。本研究为水环境中农药的高效光催化降解提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational design of S-scheme carbon-doped graphitic carbon nitride/ZnIn2S4 heterojunction with enhanced photocatalytic performance for Carbendazim

The synergistic combination of elemental doping and heterostructure engineering offers an effective strategy to overcome inherent limitations of conventional graphitic carbon nitride (g-C3N4) in photocatalyst application, particularly insufficient active sites, rapid charge carrier recombination, and narrow light absorption. This study introduces carbon self-doping into g-C3N4, followed by self-assembly with band-matched ZnIn2S4(ZIS) to construct an S-scheme C-g-C3N4/ZnIn2S4(CCN@ZIS) heterojunction. Multimodal characterization confirms carbon incorporation modifies the band structure of g-C3N4, induces nπ* transitions, and creates defect/impurity levels, significantly enhancing light absorption. Crucially, the S-scheme charge transfer mechanism enables efficient separation of photogenerated carriers, substantially boosting photocatalytic performance. These structural optimizations enable the CCN@ZIS-2 composite to achieve 94.3% carbendazim (CBZ) degradation within 60 min—outperforming CCN and ZIS by factors of 1.19 and 1.31, respectively. This work provides novel insights for high-efficiency photocatalytic degradation of pesticide in water environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
18.20%
发文量
229
审稿时长
2.6 months
期刊介绍: Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry. The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信