Leo Stoll,Sara Angelico,Eirik F Kjønstad,Henrik Koch
{"title":"相似约束CC2:激发态间高效耦合簇非绝热动力学。","authors":"Leo Stoll,Sara Angelico,Eirik F Kjønstad,Henrik Koch","doi":"10.1021/acs.jctc.5c00997","DOIUrl":null,"url":null,"abstract":"Despite their high accuracy, standard coupled cluster models cannot be used for nonadiabatic molecular dynamics simulations because they yield unphysical complex excitation energies at conical intersections between same symmetry excited states. On the other hand, similarity constrained coupled cluster theory has enabled the application of coupled cluster theory in such dynamics simulations. Here, we present a similarity constrained perturbative doubles (SCC2) model with same symmetry excited-state conical intersections that exhibit correct topography, topology, and real excitation energies. This is achieved while retaining the favorable computational scaling of the standard CC2 model. We illustrate the model for conical intersections in hypofluorous acid and thymine, and compare its performance with other methods. The results demonstrate that conical intersections between excited states can be described correctly and efficiently at the SCC2 level. We therefore expect that the SCC2 model will enable coupled cluster nonadiabatic dynamics simulations for large molecular systems.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"11 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarity Constrained CC2: Toward Efficient Coupled Cluster Nonadiabatic Dynamics among Excited States.\",\"authors\":\"Leo Stoll,Sara Angelico,Eirik F Kjønstad,Henrik Koch\",\"doi\":\"10.1021/acs.jctc.5c00997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite their high accuracy, standard coupled cluster models cannot be used for nonadiabatic molecular dynamics simulations because they yield unphysical complex excitation energies at conical intersections between same symmetry excited states. On the other hand, similarity constrained coupled cluster theory has enabled the application of coupled cluster theory in such dynamics simulations. Here, we present a similarity constrained perturbative doubles (SCC2) model with same symmetry excited-state conical intersections that exhibit correct topography, topology, and real excitation energies. This is achieved while retaining the favorable computational scaling of the standard CC2 model. We illustrate the model for conical intersections in hypofluorous acid and thymine, and compare its performance with other methods. The results demonstrate that conical intersections between excited states can be described correctly and efficiently at the SCC2 level. We therefore expect that the SCC2 model will enable coupled cluster nonadiabatic dynamics simulations for large molecular systems.\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.5c00997\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00997","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Similarity Constrained CC2: Toward Efficient Coupled Cluster Nonadiabatic Dynamics among Excited States.
Despite their high accuracy, standard coupled cluster models cannot be used for nonadiabatic molecular dynamics simulations because they yield unphysical complex excitation energies at conical intersections between same symmetry excited states. On the other hand, similarity constrained coupled cluster theory has enabled the application of coupled cluster theory in such dynamics simulations. Here, we present a similarity constrained perturbative doubles (SCC2) model with same symmetry excited-state conical intersections that exhibit correct topography, topology, and real excitation energies. This is achieved while retaining the favorable computational scaling of the standard CC2 model. We illustrate the model for conical intersections in hypofluorous acid and thymine, and compare its performance with other methods. The results demonstrate that conical intersections between excited states can be described correctly and efficiently at the SCC2 level. We therefore expect that the SCC2 model will enable coupled cluster nonadiabatic dynamics simulations for large molecular systems.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.