哥斯达黎加南部俯冲带Cocos板块撕裂和Nazca板块侵位的地震证据

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Mingye Feng, Shengji Wei, Ling Chen, Xu Wang, Marino Protti, Lujia Feng
{"title":"哥斯达黎加南部俯冲带Cocos板块撕裂和Nazca板块侵位的地震证据","authors":"Mingye Feng,&nbsp;Shengji Wei,&nbsp;Ling Chen,&nbsp;Xu Wang,&nbsp;Marino Protti,&nbsp;Lujia Feng","doi":"10.1029/2025GL116194","DOIUrl":null,"url":null,"abstract":"<p>Precise position and geometry of the subducted slab are crucial for deciphering subduction zone volcanism. This is particularly important in the southern Costa Rican subduction zone, where the Cocos Ridge subducted at ∼2–3 Ma, coincident with the uplift of the Talamanca Range but later than the arc volcanism cessation (∼5–8 Ma). Here, we apply a refined Dip Direction Searching method to teleseismic receiver function waveforms from 17 broadband stations in this region. A northeast-dipping interface is imaged deep to ∼110 and ∼60 km in the northwest and southeast of the subduction zone, respectively, interpreted as the Moho of the Cocos slab that has possibly undergone tearing. A flat interface is identified at ∼40–60 km depth exclusively beneath the Talamanca Range, which is most likely the Moho of the Nazca plate that has stagnated there since ∼8 Ma, blocking melt upwelling and consequently stopping the arc volcanism.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 20","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL116194","citationCount":"0","resultStr":"{\"title\":\"Seismic Evidence for Cocos Slab Tearing and Nazca Slab Emplacement in the Southern Costa Rican Subduction Zone\",\"authors\":\"Mingye Feng,&nbsp;Shengji Wei,&nbsp;Ling Chen,&nbsp;Xu Wang,&nbsp;Marino Protti,&nbsp;Lujia Feng\",\"doi\":\"10.1029/2025GL116194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Precise position and geometry of the subducted slab are crucial for deciphering subduction zone volcanism. This is particularly important in the southern Costa Rican subduction zone, where the Cocos Ridge subducted at ∼2–3 Ma, coincident with the uplift of the Talamanca Range but later than the arc volcanism cessation (∼5–8 Ma). Here, we apply a refined Dip Direction Searching method to teleseismic receiver function waveforms from 17 broadband stations in this region. A northeast-dipping interface is imaged deep to ∼110 and ∼60 km in the northwest and southeast of the subduction zone, respectively, interpreted as the Moho of the Cocos slab that has possibly undergone tearing. A flat interface is identified at ∼40–60 km depth exclusively beneath the Talamanca Range, which is most likely the Moho of the Nazca plate that has stagnated there since ∼8 Ma, blocking melt upwelling and consequently stopping the arc volcanism.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 20\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL116194\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL116194\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL116194","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

俯冲板块的精确位置和几何形状是解释俯冲带火山活动的关键。这在哥斯达黎加南部俯冲带尤为重要,在那里Cocos Ridge在~ 2-3 Ma俯冲,与Talamanca Range的隆起一致,但晚于弧火山活动停止(~ 5-8 Ma)。本文对该地区17个宽带台站的远震接收函数波形进行了改进的倾斜方向搜索。在俯冲带的西北和东南方向分别成像至~ 110和~ 60 km深的东北倾斜界面,解释为Cocos板块的Moho,可能经历了撕裂。在塔拉曼卡山脉下方约40-60公里处发现了一个平坦的界面,这很可能是纳斯卡板块的莫霍,自约8 Ma以来一直停滞在那里,阻止了熔体上涌,从而阻止了弧火山作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Seismic Evidence for Cocos Slab Tearing and Nazca Slab Emplacement in the Southern Costa Rican Subduction Zone

Seismic Evidence for Cocos Slab Tearing and Nazca Slab Emplacement in the Southern Costa Rican Subduction Zone

Precise position and geometry of the subducted slab are crucial for deciphering subduction zone volcanism. This is particularly important in the southern Costa Rican subduction zone, where the Cocos Ridge subducted at ∼2–3 Ma, coincident with the uplift of the Talamanca Range but later than the arc volcanism cessation (∼5–8 Ma). Here, we apply a refined Dip Direction Searching method to teleseismic receiver function waveforms from 17 broadband stations in this region. A northeast-dipping interface is imaged deep to ∼110 and ∼60 km in the northwest and southeast of the subduction zone, respectively, interpreted as the Moho of the Cocos slab that has possibly undergone tearing. A flat interface is identified at ∼40–60 km depth exclusively beneath the Talamanca Range, which is most likely the Moho of the Nazca plate that has stagnated there since ∼8 Ma, blocking melt upwelling and consequently stopping the arc volcanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信