基于人工智能的超声心动图评估监测经甲状腺素型心脏淀粉样变性的疾病进展

IF 10.8 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Lucia Venneri, Alberto Aimo, Aldostefano Porcari, Irem Sezer, Adam Ioannou, Awais Sheikh, Josephine Mansell, Yousuf Razvi, Surabhi Bhaskar Iyer, Ana Martinez-Naharro, Francesco Bandera, Sze Chi Lim, Matthew Frost, Justin Ezekowitz, Carolyn S.P. Lam, William Moody, Carol Whelan, Helen Lachmann, Ashutosh Wechelakar, Michele Emdin, Philip N. Hawkins, Scott David Solomon, Julian D. Gillmore, Marianna Fontana
{"title":"基于人工智能的超声心动图评估监测经甲状腺素型心脏淀粉样变性的疾病进展","authors":"Lucia Venneri, Alberto Aimo, Aldostefano Porcari, Irem Sezer, Adam Ioannou, Awais Sheikh, Josephine Mansell, Yousuf Razvi, Surabhi Bhaskar Iyer, Ana Martinez-Naharro, Francesco Bandera, Sze Chi Lim, Matthew Frost, Justin Ezekowitz, Carolyn S.P. Lam, William Moody, Carol Whelan, Helen Lachmann, Ashutosh Wechelakar, Michele Emdin, Philip N. Hawkins, Scott David Solomon, Julian D. Gillmore, Marianna Fontana","doi":"10.1002/ejhf.70073","DOIUrl":null,"url":null,"abstract":"In transthyretin amyloid cardiomyopathy (ATTR-CM), reduced stroke volume (SV) portends a poor prognosis. Artificial intelligence (AI) enables rapid, standardized assessment of left ventricular outflow tract velocity-time integral (LVOT-VTI), which is a reliable surrogate for SV. We investigated longitudinal changes in AI-derived LVOT-VTI as outcome predictors in ATTR-CM.","PeriodicalId":164,"journal":{"name":"European Journal of Heart Failure","volume":"32 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-based echocardiographic assessment for monitoring disease progression in transthyretin cardiac amyloidosis\",\"authors\":\"Lucia Venneri, Alberto Aimo, Aldostefano Porcari, Irem Sezer, Adam Ioannou, Awais Sheikh, Josephine Mansell, Yousuf Razvi, Surabhi Bhaskar Iyer, Ana Martinez-Naharro, Francesco Bandera, Sze Chi Lim, Matthew Frost, Justin Ezekowitz, Carolyn S.P. Lam, William Moody, Carol Whelan, Helen Lachmann, Ashutosh Wechelakar, Michele Emdin, Philip N. Hawkins, Scott David Solomon, Julian D. Gillmore, Marianna Fontana\",\"doi\":\"10.1002/ejhf.70073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In transthyretin amyloid cardiomyopathy (ATTR-CM), reduced stroke volume (SV) portends a poor prognosis. Artificial intelligence (AI) enables rapid, standardized assessment of left ventricular outflow tract velocity-time integral (LVOT-VTI), which is a reliable surrogate for SV. We investigated longitudinal changes in AI-derived LVOT-VTI as outcome predictors in ATTR-CM.\",\"PeriodicalId\":164,\"journal\":{\"name\":\"European Journal of Heart Failure\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Heart Failure\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ejhf.70073\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Heart Failure","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ejhf.70073","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在转甲状腺素淀粉样心肌病(atr - cm)中,卒中体积(SV)减少预示着预后不良。人工智能(AI)能够快速、标准化地评估左心室流出道速度-时间积分(LVOT-VTI),这是SV的可靠替代指标。我们研究了人工智能衍生的LVOT-VTI的纵向变化作为atr - cm的预后预测因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial intelligence-based echocardiographic assessment for monitoring disease progression in transthyretin cardiac amyloidosis

Artificial intelligence-based echocardiographic assessment for monitoring disease progression in transthyretin cardiac amyloidosis
In transthyretin amyloid cardiomyopathy (ATTR-CM), reduced stroke volume (SV) portends a poor prognosis. Artificial intelligence (AI) enables rapid, standardized assessment of left ventricular outflow tract velocity-time integral (LVOT-VTI), which is a reliable surrogate for SV. We investigated longitudinal changes in AI-derived LVOT-VTI as outcome predictors in ATTR-CM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Heart Failure
European Journal of Heart Failure 医学-心血管系统
CiteScore
27.30
自引率
11.50%
发文量
365
审稿时长
1 months
期刊介绍: European Journal of Heart Failure is an international journal dedicated to advancing knowledge in the field of heart failure management. The journal publishes reviews and editorials aimed at improving understanding, prevention, investigation, and treatment of heart failure. It covers various disciplines such as molecular and cellular biology, pathology, physiology, electrophysiology, pharmacology, clinical sciences, social sciences, and population sciences. The journal welcomes submissions of manuscripts on basic, clinical, and population sciences, as well as original contributions on nursing, care of the elderly, primary care, health economics, and other related specialist fields. It is published monthly and has a readership that includes cardiologists, emergency room physicians, intensivists, internists, general physicians, cardiac nurses, diabetologists, epidemiologists, basic scientists focusing on cardiovascular research, and those working in rehabilitation. The journal is abstracted and indexed in various databases such as Academic Search, Embase, MEDLINE/PubMed, and Science Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信