Camilla Panetti,Rahel Daetwyler,Anja Moncsek,Nikolaos Patikas,Andreas Agrafiotis,Adelynn Tang,Francesco Andreata,Valeria Fumagalli,Jean De Lima,Lifen Wen,Carolyn G King,Ajithkumar Vasanthakumar,Matteo Iannacone,Axel Kallies,Alexander Yermanos,Martin Hemberg,Nicole Joller
{"title":"共抑制受体TIGIT促进T细胞的组织保护功能。","authors":"Camilla Panetti,Rahel Daetwyler,Anja Moncsek,Nikolaos Patikas,Andreas Agrafiotis,Adelynn Tang,Francesco Andreata,Valeria Fumagalli,Jean De Lima,Lifen Wen,Carolyn G King,Ajithkumar Vasanthakumar,Matteo Iannacone,Axel Kallies,Alexander Yermanos,Martin Hemberg,Nicole Joller","doi":"10.1038/s41590-025-02300-w","DOIUrl":null,"url":null,"abstract":"The co-inhibitory receptor TIGIT suppresses excessive immune responses in autoimmune conditions while also restraining antitumor immunity. In viral infections, TIGIT alone does not affect viral control but has been shown to limit tissue pathology. However, the underlying mechanisms are incompletely understood. Here we found TIGIT+ T cells to express not only an immunoregulatory gene signature but also a tissue repair gene signature. Specifically, after viral infection, TIGIT directly drives expression of the tissue growth factor amphiregulin (Areg), which is strongly reduced in the absence of TIGIT. We identified regulatory T (Treg) cells, but not CD8+ T cells, as the critical T cell subset mediating these tissue-protective effects. In Treg cells, TIGIT engagement after T cell antigen receptor stimulation induces the transcription factor Blimp-1, which then promotes Areg production and tissue repair. Thus, we uncovered a nonclassical function of the co-inhibitory receptor TIGIT, wherein it not only limits immune pathology by suppressing the immune response but also actively fosters tissue regeneration by inducing the tissue growth factor Areg in T cells.","PeriodicalId":19032,"journal":{"name":"Nature Immunology","volume":"1 1","pages":""},"PeriodicalIF":27.6000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The co-inhibitory receptor TIGIT promotes tissue-protective functions in T cells.\",\"authors\":\"Camilla Panetti,Rahel Daetwyler,Anja Moncsek,Nikolaos Patikas,Andreas Agrafiotis,Adelynn Tang,Francesco Andreata,Valeria Fumagalli,Jean De Lima,Lifen Wen,Carolyn G King,Ajithkumar Vasanthakumar,Matteo Iannacone,Axel Kallies,Alexander Yermanos,Martin Hemberg,Nicole Joller\",\"doi\":\"10.1038/s41590-025-02300-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The co-inhibitory receptor TIGIT suppresses excessive immune responses in autoimmune conditions while also restraining antitumor immunity. In viral infections, TIGIT alone does not affect viral control but has been shown to limit tissue pathology. However, the underlying mechanisms are incompletely understood. Here we found TIGIT+ T cells to express not only an immunoregulatory gene signature but also a tissue repair gene signature. Specifically, after viral infection, TIGIT directly drives expression of the tissue growth factor amphiregulin (Areg), which is strongly reduced in the absence of TIGIT. We identified regulatory T (Treg) cells, but not CD8+ T cells, as the critical T cell subset mediating these tissue-protective effects. In Treg cells, TIGIT engagement after T cell antigen receptor stimulation induces the transcription factor Blimp-1, which then promotes Areg production and tissue repair. Thus, we uncovered a nonclassical function of the co-inhibitory receptor TIGIT, wherein it not only limits immune pathology by suppressing the immune response but also actively fosters tissue regeneration by inducing the tissue growth factor Areg in T cells.\",\"PeriodicalId\":19032,\"journal\":{\"name\":\"Nature Immunology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":27.6000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41590-025-02300-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41590-025-02300-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The co-inhibitory receptor TIGIT promotes tissue-protective functions in T cells.
The co-inhibitory receptor TIGIT suppresses excessive immune responses in autoimmune conditions while also restraining antitumor immunity. In viral infections, TIGIT alone does not affect viral control but has been shown to limit tissue pathology. However, the underlying mechanisms are incompletely understood. Here we found TIGIT+ T cells to express not only an immunoregulatory gene signature but also a tissue repair gene signature. Specifically, after viral infection, TIGIT directly drives expression of the tissue growth factor amphiregulin (Areg), which is strongly reduced in the absence of TIGIT. We identified regulatory T (Treg) cells, but not CD8+ T cells, as the critical T cell subset mediating these tissue-protective effects. In Treg cells, TIGIT engagement after T cell antigen receptor stimulation induces the transcription factor Blimp-1, which then promotes Areg production and tissue repair. Thus, we uncovered a nonclassical function of the co-inhibitory receptor TIGIT, wherein it not only limits immune pathology by suppressing the immune response but also actively fosters tissue regeneration by inducing the tissue growth factor Areg in T cells.
期刊介绍:
Nature Immunology is a monthly journal that publishes the highest quality research in all areas of immunology. The editorial decisions are made by a team of full-time professional editors. The journal prioritizes work that provides translational and/or fundamental insight into the workings of the immune system. It covers a wide range of topics including innate immunity and inflammation, development, immune receptors, signaling and apoptosis, antigen presentation, gene regulation and recombination, cellular and systemic immunity, vaccines, immune tolerance, autoimmunity, tumor immunology, and microbial immunopathology. In addition to publishing significant original research, Nature Immunology also includes comments, News and Views, research highlights, matters arising from readers, and reviews of the literature. The journal serves as a major conduit of top-quality information for the immunology community.