通过PAL途径生物合成水杨酸需要苯甲醛合成酶和苯基水杨酸特异性酯酶。

Dawei Ma,Harley Gordon,Rashid Nazir,Jeremy E Wulff,C Peter Constabel
{"title":"通过PAL途径生物合成水杨酸需要苯甲醛合成酶和苯基水杨酸特异性酯酶。","authors":"Dawei Ma,Harley Gordon,Rashid Nazir,Jeremy E Wulff,C Peter Constabel","doi":"10.1093/plcell/koaf241","DOIUrl":null,"url":null,"abstract":"Salicylic acid (SA) biosynthesis in plants occurs via the isochorismate synthase (ICS) and phenylalanine ammonia-lyase (PAL) pathways. The critical steps from benzyl-CoA to SA in the PAL-mediated pathway remain unknown. To probe benzenoid metabolism, we generated CRISPR/Cas9-mediated knockouts of benzaldehyde synthase in poplar. These plants produce less benzyl benzoate, benzyl salicylate and SA, yet accumulate more benzoic acid. We show that HSR203J encodes a carboxylesterase that specifically hydrolyzes benzyl salicylate. Virus-induced gene silencing (VIGS) of HSR203J in Nicotiana benthamiana led to reduced benzyl salicylate hydrolysis to SA. Based on these data, we propose a biosynthesis model and provide evidence that benzoyl-CoA is esterified to benzyl benzoate and converted to benzyl salicylate, which then releases SA. In addition, we identified a pathogen-induced cytochrome P450 encoded by HSR515 as a putative benzyl benzoate 2-hydroxylase. VIGS-mediated suppression of HSR515 in N. benthamiana reduced the conversion of benzyl benzoate to SA. Phylogenetic analyses indicated that Brassicaceae genomes do not contain HSR203J and HSR515 orthologs, whereas these genes are present in other vascular plants. These findings represent an important advance in our understanding of SA biosynthesis and identify missing steps in the PAL-mediated SA biosynthetic pathway.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salicylic acid biosynthesis via the PAL pathway requires benzaldehyde synthase and a benzyl salicylate-specific esterase.\",\"authors\":\"Dawei Ma,Harley Gordon,Rashid Nazir,Jeremy E Wulff,C Peter Constabel\",\"doi\":\"10.1093/plcell/koaf241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salicylic acid (SA) biosynthesis in plants occurs via the isochorismate synthase (ICS) and phenylalanine ammonia-lyase (PAL) pathways. The critical steps from benzyl-CoA to SA in the PAL-mediated pathway remain unknown. To probe benzenoid metabolism, we generated CRISPR/Cas9-mediated knockouts of benzaldehyde synthase in poplar. These plants produce less benzyl benzoate, benzyl salicylate and SA, yet accumulate more benzoic acid. We show that HSR203J encodes a carboxylesterase that specifically hydrolyzes benzyl salicylate. Virus-induced gene silencing (VIGS) of HSR203J in Nicotiana benthamiana led to reduced benzyl salicylate hydrolysis to SA. Based on these data, we propose a biosynthesis model and provide evidence that benzoyl-CoA is esterified to benzyl benzoate and converted to benzyl salicylate, which then releases SA. In addition, we identified a pathogen-induced cytochrome P450 encoded by HSR515 as a putative benzyl benzoate 2-hydroxylase. VIGS-mediated suppression of HSR515 in N. benthamiana reduced the conversion of benzyl benzoate to SA. Phylogenetic analyses indicated that Brassicaceae genomes do not contain HSR203J and HSR515 orthologs, whereas these genes are present in other vascular plants. These findings represent an important advance in our understanding of SA biosynthesis and identify missing steps in the PAL-mediated SA biosynthetic pathway.\",\"PeriodicalId\":501012,\"journal\":{\"name\":\"The Plant Cell\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koaf241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水杨酸(SA)在植物体内的生物合成主要通过异氯酸合成酶(ICS)和苯丙氨酸解氨酶(PAL)两种途径进行。在pal介导的途径中,从苄基辅酶a到SA的关键步骤尚不清楚。为了探究苯类代谢,我们在杨树中产生了CRISPR/ cas9介导的苯甲醛合成酶敲除。这些植物产生较少的苯甲酸苄酯、水杨酸苄酯和SA,而积累较多的苯甲酸。我们发现HSR203J编码一种羧酸酯酶,可以特异性水解水杨酸苄酯。本烟中HSR203J的病毒诱导基因沉默(VIGS)导致水杨酸苄酯水解还原为SA。基于这些数据,我们提出了一个生物合成模型,并提供了证据,证明苯甲酰辅酶a酯化成苯甲酸苄酯,转化为水杨酸苄酯,然后释放SA。此外,我们还鉴定出由HSR515编码的病原体诱导的细胞色素P450作为假定的苯甲酸苄酯2-羟化酶。vigs介导的benthamiana中HSR515的抑制降低了苯甲酸苄酯向SA的转化。系统发育分析表明,十字花科植物基因组中不存在HSR203J和HSR515同源基因,而这些基因在其他维管植物中存在。这些发现代表了我们对SA生物合成的理解的重要进展,并确定了pal介导的SA生物合成途径中缺失的步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Salicylic acid biosynthesis via the PAL pathway requires benzaldehyde synthase and a benzyl salicylate-specific esterase.
Salicylic acid (SA) biosynthesis in plants occurs via the isochorismate synthase (ICS) and phenylalanine ammonia-lyase (PAL) pathways. The critical steps from benzyl-CoA to SA in the PAL-mediated pathway remain unknown. To probe benzenoid metabolism, we generated CRISPR/Cas9-mediated knockouts of benzaldehyde synthase in poplar. These plants produce less benzyl benzoate, benzyl salicylate and SA, yet accumulate more benzoic acid. We show that HSR203J encodes a carboxylesterase that specifically hydrolyzes benzyl salicylate. Virus-induced gene silencing (VIGS) of HSR203J in Nicotiana benthamiana led to reduced benzyl salicylate hydrolysis to SA. Based on these data, we propose a biosynthesis model and provide evidence that benzoyl-CoA is esterified to benzyl benzoate and converted to benzyl salicylate, which then releases SA. In addition, we identified a pathogen-induced cytochrome P450 encoded by HSR515 as a putative benzyl benzoate 2-hydroxylase. VIGS-mediated suppression of HSR515 in N. benthamiana reduced the conversion of benzyl benzoate to SA. Phylogenetic analyses indicated that Brassicaceae genomes do not contain HSR203J and HSR515 orthologs, whereas these genes are present in other vascular plants. These findings represent an important advance in our understanding of SA biosynthesis and identify missing steps in the PAL-mediated SA biosynthetic pathway.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信