Yu-Peng Wang, Jie Ren, Sarang Gopalakrishnan, Romain Vasseur
{"title":"具有节点相互作用的混沌量子系统中的超扩散输运","authors":"Yu-Peng Wang, Jie Ren, Sarang Gopalakrishnan, Romain Vasseur","doi":"10.1103/xx9z-4j6c","DOIUrl":null,"url":null,"abstract":"We introduce a class of interacting fermionic quantum models in d</a:mi></a:math> dimensions with nodal interactions that exhibit superdiffusive transport. We establish nonperturbatively that the nodal structure of the interactions gives rise to long-lived quasiparticle excitations that result in a diverging diffusion constant, even though the system is fully chaotic. Using a Boltzmann equation approach, we find that the charge mode acquires an anomalous dispersion relation at long wavelength <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mi>ω</c:mi><c:mo stretchy=\"false\">(</c:mo><c:mi>q</c:mi><c:mo stretchy=\"false\">)</c:mo><c:mo>∼</c:mo><c:msup><c:mrow><c:mi>q</c:mi></c:mrow><c:mrow><c:mi>z</c:mi></c:mrow></c:msup></c:mrow></c:math> with dynamical exponent <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mi>z</g:mi><g:mo>=</g:mo><g:mi>min</g:mi><g:mo stretchy=\"false\">[</g:mo><g:mo stretchy=\"false\">(</g:mo><g:mn>2</g:mn><g:mi>n</g:mi><g:mo>+</g:mo><g:mi>d</g:mi><g:mo stretchy=\"false\">)</g:mo><g:mo>/</g:mo><g:mn>2</g:mn><g:mi>n</g:mi><g:mo>,</g:mo><g:mn>2</g:mn><g:mo stretchy=\"false\">]</g:mo></g:mrow></g:math>, where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>n</m:mi></m:math> is the order of the nodal point in momentum space. We verify our predictions in one-dimensional systems using tensor-network techniques.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"59 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superdiffusive Transport in Chaotic Quantum Systems with Nodal Interactions\",\"authors\":\"Yu-Peng Wang, Jie Ren, Sarang Gopalakrishnan, Romain Vasseur\",\"doi\":\"10.1103/xx9z-4j6c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a class of interacting fermionic quantum models in d</a:mi></a:math> dimensions with nodal interactions that exhibit superdiffusive transport. We establish nonperturbatively that the nodal structure of the interactions gives rise to long-lived quasiparticle excitations that result in a diverging diffusion constant, even though the system is fully chaotic. Using a Boltzmann equation approach, we find that the charge mode acquires an anomalous dispersion relation at long wavelength <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mrow><c:mi>ω</c:mi><c:mo stretchy=\\\"false\\\">(</c:mo><c:mi>q</c:mi><c:mo stretchy=\\\"false\\\">)</c:mo><c:mo>∼</c:mo><c:msup><c:mrow><c:mi>q</c:mi></c:mrow><c:mrow><c:mi>z</c:mi></c:mrow></c:msup></c:mrow></c:math> with dynamical exponent <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mrow><g:mi>z</g:mi><g:mo>=</g:mo><g:mi>min</g:mi><g:mo stretchy=\\\"false\\\">[</g:mo><g:mo stretchy=\\\"false\\\">(</g:mo><g:mn>2</g:mn><g:mi>n</g:mi><g:mo>+</g:mo><g:mi>d</g:mi><g:mo stretchy=\\\"false\\\">)</g:mo><g:mo>/</g:mo><g:mn>2</g:mn><g:mi>n</g:mi><g:mo>,</g:mo><g:mn>2</g:mn><g:mo stretchy=\\\"false\\\">]</g:mo></g:mrow></g:math>, where <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi>n</m:mi></m:math> is the order of the nodal point in momentum space. We verify our predictions in one-dimensional systems using tensor-network techniques.\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/xx9z-4j6c\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/xx9z-4j6c","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Superdiffusive Transport in Chaotic Quantum Systems with Nodal Interactions
We introduce a class of interacting fermionic quantum models in d dimensions with nodal interactions that exhibit superdiffusive transport. We establish nonperturbatively that the nodal structure of the interactions gives rise to long-lived quasiparticle excitations that result in a diverging diffusion constant, even though the system is fully chaotic. Using a Boltzmann equation approach, we find that the charge mode acquires an anomalous dispersion relation at long wavelength ω(q)∼qz with dynamical exponent z=min[(2n+d)/2n,2], where n is the order of the nodal point in momentum space. We verify our predictions in one-dimensional systems using tensor-network techniques.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks