Connor S.R. Jankowski, Laith Z. Samarah, Michael R. MacArthur, Sarah J. Mitchell, Daniel R. Weilandt, Craig J. Hunter, Xianfeng Zeng, Melanie R. McReynolds, Joshua D. Rabinowitz
{"title":"老年小鼠表现出广泛的代谢变化,但保留了主要的通量","authors":"Connor S.R. Jankowski, Laith Z. Samarah, Michael R. MacArthur, Sarah J. Mitchell, Daniel R. Weilandt, Craig J. Hunter, Xianfeng Zeng, Melanie R. McReynolds, Joshua D. Rabinowitz","doi":"10.1016/j.cmet.2025.09.009","DOIUrl":null,"url":null,"abstract":"Metabolic dysregulation is a hallmark of aging. Here, we investigate in mice age-induced metabolic alterations using metabolomics and stable isotope tracing. Circulating metabolite fluxes and serum and tissue concentrations were measured in young and old (20–30 months) C57BL/6J mice, with young obese (ob/ob) mice as a comparator. For major circulating metabolites, concentrations changed more with age than fluxes, and fluxes changed more with obesity than with aging. Specifically, glucose, lactate, 3-hydroxybutryate, and many amino acids (but notably not taurine) change significantly in concentration with age. Only glutamine circulatory flux does so. The fluxes of major circulating metabolites remain stable despite underlying metabolic changes. For example, lysine catabolism shifts from the saccharopine toward the pipecolic acid pathway, and both pipecolic acid concentration and flux increase with aging. Other less-abundant metabolites also show coherent, age-induced concentration and flux changes. Thus, while aging leads to widespread metabolic changes, major metabolic fluxes are largely preserved.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"24 1","pages":""},"PeriodicalIF":30.9000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aged mice exhibit widespread metabolic changes but preserved major fluxes\",\"authors\":\"Connor S.R. Jankowski, Laith Z. Samarah, Michael R. MacArthur, Sarah J. Mitchell, Daniel R. Weilandt, Craig J. Hunter, Xianfeng Zeng, Melanie R. McReynolds, Joshua D. Rabinowitz\",\"doi\":\"10.1016/j.cmet.2025.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metabolic dysregulation is a hallmark of aging. Here, we investigate in mice age-induced metabolic alterations using metabolomics and stable isotope tracing. Circulating metabolite fluxes and serum and tissue concentrations were measured in young and old (20–30 months) C57BL/6J mice, with young obese (ob/ob) mice as a comparator. For major circulating metabolites, concentrations changed more with age than fluxes, and fluxes changed more with obesity than with aging. Specifically, glucose, lactate, 3-hydroxybutryate, and many amino acids (but notably not taurine) change significantly in concentration with age. Only glutamine circulatory flux does so. The fluxes of major circulating metabolites remain stable despite underlying metabolic changes. For example, lysine catabolism shifts from the saccharopine toward the pipecolic acid pathway, and both pipecolic acid concentration and flux increase with aging. Other less-abundant metabolites also show coherent, age-induced concentration and flux changes. Thus, while aging leads to widespread metabolic changes, major metabolic fluxes are largely preserved.\",\"PeriodicalId\":9840,\"journal\":{\"name\":\"Cell metabolism\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":30.9000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell metabolism\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmet.2025.09.009\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2025.09.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Aged mice exhibit widespread metabolic changes but preserved major fluxes
Metabolic dysregulation is a hallmark of aging. Here, we investigate in mice age-induced metabolic alterations using metabolomics and stable isotope tracing. Circulating metabolite fluxes and serum and tissue concentrations were measured in young and old (20–30 months) C57BL/6J mice, with young obese (ob/ob) mice as a comparator. For major circulating metabolites, concentrations changed more with age than fluxes, and fluxes changed more with obesity than with aging. Specifically, glucose, lactate, 3-hydroxybutryate, and many amino acids (but notably not taurine) change significantly in concentration with age. Only glutamine circulatory flux does so. The fluxes of major circulating metabolites remain stable despite underlying metabolic changes. For example, lysine catabolism shifts from the saccharopine toward the pipecolic acid pathway, and both pipecolic acid concentration and flux increase with aging. Other less-abundant metabolites also show coherent, age-induced concentration and flux changes. Thus, while aging leads to widespread metabolic changes, major metabolic fluxes are largely preserved.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.