大陆尺度高频闪电观测

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Yunjiao Pu, Steven A. Cummer, Yongze Jia
{"title":"大陆尺度高频闪电观测","authors":"Yunjiao Pu,&nbsp;Steven A. Cummer,&nbsp;Yongze Jia","doi":"10.1029/2025GL116075","DOIUrl":null,"url":null,"abstract":"<p>We initiated high-frequency (HF, 3–30 MHz) lightning observations to remotely study lightning processes using skywave propagation. HF lightning skywaves were detected at distances up to 3,300 km (potentially farther) during both day and night, with over 64% of events having peak currents below 50 kA. HF measurements revealed distinct temporal features of negative cloud-to-ground (CG) leaders, narrow bipolar events, and negative breakdown following positive return strokes. Unlike VLF and LF methods, which primarily capture current pulses along lightning channels, HF observations detect both transient and prolonged leader emissions. This provides more equal sensitivity to both in-cloud (IC) and CG events, potentially benefiting IC/CG classification and studies of IC-associated phenomena such as terrestrial gamma-ray flashes. Ionospheric conditions may influence HF signal propagation but can be mitigated by observing the full HF band. These findings demonstrate the potential of HF observations for advancing lightning physics and storm monitoring over long distances.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 20","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL116075","citationCount":"0","resultStr":"{\"title\":\"Continental-Scale Lightning Observations at High Frequency\",\"authors\":\"Yunjiao Pu,&nbsp;Steven A. Cummer,&nbsp;Yongze Jia\",\"doi\":\"10.1029/2025GL116075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We initiated high-frequency (HF, 3–30 MHz) lightning observations to remotely study lightning processes using skywave propagation. HF lightning skywaves were detected at distances up to 3,300 km (potentially farther) during both day and night, with over 64% of events having peak currents below 50 kA. HF measurements revealed distinct temporal features of negative cloud-to-ground (CG) leaders, narrow bipolar events, and negative breakdown following positive return strokes. Unlike VLF and LF methods, which primarily capture current pulses along lightning channels, HF observations detect both transient and prolonged leader emissions. This provides more equal sensitivity to both in-cloud (IC) and CG events, potentially benefiting IC/CG classification and studies of IC-associated phenomena such as terrestrial gamma-ray flashes. Ionospheric conditions may influence HF signal propagation but can be mitigated by observing the full HF band. These findings demonstrate the potential of HF observations for advancing lightning physics and storm monitoring over long distances.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 20\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL116075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL116075\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL116075","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们启动了高频(HF, 3 - 30mhz)闪电观测,利用天波传播远程研究闪电过程。在白天和夜间,高频闪电天波的探测距离可达3300公里(可能更远),其中超过64%的事件峰值电流低于50 kA。高频测量显示出明显的时间特征:负云对地(CG)引线、窄双极事件和正回击后的负击穿。与主要捕获沿闪电通道的电流脉冲的VLF和LF方法不同,HF观测可以探测瞬态和长时间先导发射。这为云中(IC)和CG事件提供了更平等的灵敏度,潜在地有利于IC/CG分类和IC相关现象(如地面伽马射线闪光)的研究。电离层条件可能影响高频信号的传播,但可以通过观察整个高频波段来减轻这种影响。这些发现证明了高频观测在推进长距离闪电物理和风暴监测方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Continental-Scale Lightning Observations at High Frequency

Continental-Scale Lightning Observations at High Frequency

We initiated high-frequency (HF, 3–30 MHz) lightning observations to remotely study lightning processes using skywave propagation. HF lightning skywaves were detected at distances up to 3,300 km (potentially farther) during both day and night, with over 64% of events having peak currents below 50 kA. HF measurements revealed distinct temporal features of negative cloud-to-ground (CG) leaders, narrow bipolar events, and negative breakdown following positive return strokes. Unlike VLF and LF methods, which primarily capture current pulses along lightning channels, HF observations detect both transient and prolonged leader emissions. This provides more equal sensitivity to both in-cloud (IC) and CG events, potentially benefiting IC/CG classification and studies of IC-associated phenomena such as terrestrial gamma-ray flashes. Ionospheric conditions may influence HF signal propagation but can be mitigated by observing the full HF band. These findings demonstrate the potential of HF observations for advancing lightning physics and storm monitoring over long distances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信