深度学习揭示ENSO在印度洋偶极子上的足迹:来自东太平洋(美国)海岸的见解

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Haoyu Wang, Jing Wang, Xiaofeng Li
{"title":"深度学习揭示ENSO在印度洋偶极子上的足迹:来自东太平洋(美国)海岸的见解","authors":"Haoyu Wang,&nbsp;Jing Wang,&nbsp;Xiaofeng Li","doi":"10.1029/2025GL118949","DOIUrl":null,"url":null,"abstract":"<p>The Indian Ocean Dipole (IOD) significantly influences global climate and ecosystem dynamics, yet accurate forecasting remains challenging due to its complex nature. Here, we present an interpretable deep-learning framework, STPNet, that achieves the-state-of-the-art 8-month forecasting of fall IOD events by leveraging sea surface temperature anomalies (SSTA) and sea surface height anomalies (SSHA) from CMIP6 data. Through STPNet's interpretability features and targeted sensitivity experiments, we not only confirmed previously known IOD precursors but also identified a novel precursor along the eastern Pacific (American) Coast. Subsequent lagged regression analysis revealed this precursor's connection to ENSO-mediated coupling between extratropical and subtropical Pacific SST patterns, completing the global map of IOD precursors. Our findings substantially advance the understanding of IOD mechanisms and provide a robust framework for operational forecasting, with direct implications for global climate adaptation strategies.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 20","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL118949","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Reveals ENSO's Footprint on the Indian Ocean Dipole: Insights From the Eastern Pacific (American) Coast\",\"authors\":\"Haoyu Wang,&nbsp;Jing Wang,&nbsp;Xiaofeng Li\",\"doi\":\"10.1029/2025GL118949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Indian Ocean Dipole (IOD) significantly influences global climate and ecosystem dynamics, yet accurate forecasting remains challenging due to its complex nature. Here, we present an interpretable deep-learning framework, STPNet, that achieves the-state-of-the-art 8-month forecasting of fall IOD events by leveraging sea surface temperature anomalies (SSTA) and sea surface height anomalies (SSHA) from CMIP6 data. Through STPNet's interpretability features and targeted sensitivity experiments, we not only confirmed previously known IOD precursors but also identified a novel precursor along the eastern Pacific (American) Coast. Subsequent lagged regression analysis revealed this precursor's connection to ENSO-mediated coupling between extratropical and subtropical Pacific SST patterns, completing the global map of IOD precursors. Our findings substantially advance the understanding of IOD mechanisms and provide a robust framework for operational forecasting, with direct implications for global climate adaptation strategies.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 20\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL118949\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL118949\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL118949","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

印度洋偶极子(IOD)对全球气候和生态系统动态具有重要影响,但由于其复杂性,对其进行准确预测仍然具有挑战性。在这里,我们提出了一个可解释的深度学习框架,即STPNet,通过利用CMIP6数据中的海面温度异常(SSTA)和海面高度异常(SSHA),实现了最新的8个月IOD下降事件的预测。通过STPNet的可解释性特征和针对性敏感性实验,我们不仅证实了以前已知的IOD前体,而且还在东太平洋(美国)海岸发现了一种新的前体。随后的滞后回归分析揭示了该前体与ENSO介导的温带和亚热带太平洋海温模式之间的耦合有关,从而完成了IOD前体的全球地图。我们的研究结果极大地促进了对IOD机制的理解,并为业务预测提供了一个强大的框架,对全球气候适应战略具有直接意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep Learning Reveals ENSO's Footprint on the Indian Ocean Dipole: Insights From the Eastern Pacific (American) Coast

Deep Learning Reveals ENSO's Footprint on the Indian Ocean Dipole: Insights From the Eastern Pacific (American) Coast

The Indian Ocean Dipole (IOD) significantly influences global climate and ecosystem dynamics, yet accurate forecasting remains challenging due to its complex nature. Here, we present an interpretable deep-learning framework, STPNet, that achieves the-state-of-the-art 8-month forecasting of fall IOD events by leveraging sea surface temperature anomalies (SSTA) and sea surface height anomalies (SSHA) from CMIP6 data. Through STPNet's interpretability features and targeted sensitivity experiments, we not only confirmed previously known IOD precursors but also identified a novel precursor along the eastern Pacific (American) Coast. Subsequent lagged regression analysis revealed this precursor's connection to ENSO-mediated coupling between extratropical and subtropical Pacific SST patterns, completing the global map of IOD precursors. Our findings substantially advance the understanding of IOD mechanisms and provide a robust framework for operational forecasting, with direct implications for global climate adaptation strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信