SU(2)和SU(3)晶格QCD的色磁相关性

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Atsuya Tokutake, Kei Tohme, Hideo Suganuma
{"title":"SU(2)和SU(3)晶格QCD的色磁相关性","authors":"Atsuya Tokutake, Kei Tohme, Hideo Suganuma","doi":"10.1103/1n8n-xlnp","DOIUrl":null,"url":null,"abstract":"We study the two-point field-strength correlation g</a:mi>2</a:mn></a:msup>⟨</a:mo>G</a:mi>μ</a:mi>ν</a:mi></a:mrow>a</a:mi></a:msubsup>(</a:mo>s</a:mi>)</a:mo>G</a:mi>α</a:mi>β</a:mi></a:mrow>b</a:mi></a:msubsup>(</a:mo>s</a:mi>′</a:mo></a:msup>)</a:mo>⟩</a:mo></a:math> in the Landau gauge in SU(2) and SU(3) quenched lattice QCD, as well as the gluon propagator <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msup><i:mi>g</i:mi><i:mn>2</i:mn></i:msup><i:mo stretchy=\"false\">⟨</i:mo><i:msubsup><i:mi>A</i:mi><i:mi>μ</i:mi><i:mi>a</i:mi></i:msubsup><i:mo stretchy=\"false\">(</i:mo><i:mi>s</i:mi><i:mo stretchy=\"false\">)</i:mo><i:msubsup><i:mi>A</i:mi><i:mi>ν</i:mi><i:mi>b</i:mi></i:msubsup><i:mo stretchy=\"false\">(</i:mo><i:msup><i:mi>s</i:mi><i:mo>′</i:mo></i:msup><i:mo stretchy=\"false\">)</i:mo><i:mo stretchy=\"false\">⟩</i:mo></i:math>. The Landau-gauge gluon propagator <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:msup><q:mi>g</q:mi><q:mn>2</q:mn></q:msup><q:mo stretchy=\"false\">⟨</q:mo><q:msubsup><q:mi>A</q:mi><q:mi>μ</q:mi><q:mi>a</q:mi></q:msubsup><q:mo stretchy=\"false\">(</q:mo><q:mi>s</q:mi><q:mo stretchy=\"false\">)</q:mo><q:msubsup><q:mi>A</q:mi><q:mi>μ</q:mi><q:mi>a</q:mi></q:msubsup><q:mo stretchy=\"false\">(</q:mo><q:msup><q:mi>s</q:mi><q:mo>′</q:mo></q:msup><q:mo stretchy=\"false\">)</q:mo><q:mo stretchy=\"false\">⟩</q:mo></q:math> is well described by the Yukawa-type function <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:msup><y:mi>e</y:mi><y:mrow><y:mo>−</y:mo><y:mi>m</y:mi><y:mi>r</y:mi></y:mrow></y:msup><y:mo>/</y:mo><y:mi>r</y:mi></y:math> with r</ab:mi>≡</ab:mo>|</ab:mo>s</ab:mi>−</ab:mo>s</ab:mi>′</ab:mo></ab:msup>|</ab:mo></ab:math> for <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>r</eb:mi><eb:mo>=</eb:mo><eb:mn>0.1</eb:mn><eb:mi>–</eb:mi><eb:mn>1.0</eb:mn><eb:mtext> </eb:mtext><eb:mtext> </eb:mtext><eb:mi>fm</eb:mi></eb:math> in both SU(2) and SU(3) QCD. Next, motivated by color-magnetic instabilities in the QCD vacuum, we investigate the perpendicular-type color-magnetic correlation, <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mrow><gb:msub><gb:mrow><gb:mi>C</gb:mi></gb:mrow><gb:mrow><gb:mo>⊥</gb:mo></gb:mrow></gb:msub><gb:mo stretchy=\"false\">(</gb:mo><gb:mi>r</gb:mi><gb:mo stretchy=\"false\">)</gb:mo><gb:mo>≡</gb:mo><gb:msup><gb:mrow><gb:mi>g</gb:mi></gb:mrow><gb:mrow><gb:mn>2</gb:mn></gb:mrow></gb:msup><gb:mo stretchy=\"false\">⟨</gb:mo><gb:msubsup><gb:mrow><gb:mi>H</gb:mi></gb:mrow><gb:mrow><gb:mi>z</gb:mi></gb:mrow><gb:mrow><gb:mi>a</gb:mi></gb:mrow></gb:msubsup><gb:mo stretchy=\"false\">(</gb:mo><gb:mi>s</gb:mi><gb:mo stretchy=\"false\">)</gb:mo><gb:msubsup><gb:mrow><gb:mi>H</gb:mi></gb:mrow><gb:mrow><gb:mi>z</gb:mi></gb:mrow><gb:mrow><gb:mi>a</gb:mi></gb:mrow></gb:msubsup><gb:mo stretchy=\"false\">(</gb:mo><gb:mi>s</gb:mi><gb:mo>+</gb:mo><gb:mi>r</gb:mi><gb:mover accent=\"true\"><gb:mrow><gb:mo>⊥</gb:mo></gb:mrow><gb:mrow><gb:mo stretchy=\"false\">^</gb:mo></gb:mrow></gb:mover><gb:mo stretchy=\"false\">)</gb:mo><gb:mo stretchy=\"false\">)</gb:mo><gb:mo stretchy=\"false\">⟩</gb:mo></gb:mrow></gb:math> (<tb:math xmlns:tb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><tb:mrow><tb:mover accent=\"true\"><tb:mrow><tb:mo>⊥</tb:mo></tb:mrow><tb:mrow><tb:mo stretchy=\"false\">^</tb:mo></tb:mrow></tb:mover></tb:mrow></tb:math>: unit vector on the <xb:math xmlns:xb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><xb:mi>x</xb:mi><xb:mi>y</xb:mi></xb:math> plane), and the parallel-type one, <zb:math xmlns:zb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><zb:mrow><zb:msub><zb:mrow><zb:mi>C</zb:mi></zb:mrow><zb:mrow><zb:mo stretchy=\"false\">∥</zb:mo></zb:mrow></zb:msub><zb:mo stretchy=\"false\">(</zb:mo><zb:mi>r</zb:mi><zb:mo stretchy=\"false\">)</zb:mo><zb:mo>≡</zb:mo><zb:msup><zb:mrow><zb:mi>g</zb:mi></zb:mrow><zb:mrow><zb:mn>2</zb:mn></zb:mrow></zb:msup><zb:mo stretchy=\"false\">⟨</zb:mo><zb:msubsup><zb:mrow><zb:mi>H</zb:mi></zb:mrow><zb:mrow><zb:mi>z</zb:mi></zb:mrow><zb:mrow><zb:mi>a</zb:mi></zb:mrow></zb:msubsup><zb:mo stretchy=\"false\">(</zb:mo><zb:mi>s</zb:mi><zb:mo stretchy=\"false\">)</zb:mo><zb:msubsup><zb:mrow><zb:mi>H</zb:mi></zb:mrow><zb:mrow><zb:mi>z</zb:mi></zb:mrow><zb:mrow><zb:mi>a</zb:mi></zb:mrow></zb:msubsup><zb:mo stretchy=\"false\">(</zb:mo><zb:mi>s</zb:mi><zb:mo>+</zb:mo><zb:mi>r</zb:mi><zb:mover accent=\"true\"><zb:mrow><zb:mo stretchy=\"false\">∥</zb:mo></zb:mrow><zb:mrow><zb:mo>^</zb:mo></zb:mrow></zb:mover><zb:mo stretchy=\"false\">)</zb:mo><zb:mo stretchy=\"false\">⟩</zb:mo></zb:mrow></zb:math> (<mc:math xmlns:mc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mc:mrow><mc:mover accent=\"true\"><mc:mrow><mc:mo stretchy=\"false\">∥</mc:mo></mc:mrow><mc:mrow><mc:mo>^</mc:mo></mc:mrow></mc:mover></mc:mrow></mc:math>: unit vector on the <qc:math xmlns:qc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><qc:mi>t</qc:mi><qc:mi>z</qc:mi></qc:math> plane). These two quantities reproduce all the correlation of <sc:math xmlns:sc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><sc:msup><sc:mi>g</sc:mi><sc:mn>2</sc:mn></sc:msup><sc:mo stretchy=\"false\">⟨</sc:mo><sc:msubsup><sc:mi>G</sc:mi><sc:mrow><sc:mi>μ</sc:mi><sc:mi>ν</sc:mi></sc:mrow><sc:mi>a</sc:mi></sc:msubsup><sc:mo stretchy=\"false\">(</sc:mo><sc:mi>s</sc:mi><sc:mo stretchy=\"false\">)</sc:mo><sc:msubsup><sc:mi>G</sc:mi><sc:mrow><sc:mi>α</sc:mi><sc:mi>β</sc:mi></sc:mrow><sc:mi>b</sc:mi></sc:msubsup><sc:mo stretchy=\"false\">(</sc:mo><sc:msup><sc:mi>s</sc:mi><sc:mo>′</sc:mo></sc:msup><sc:mo stretchy=\"false\">)</sc:mo><sc:mo stretchy=\"false\">⟩</sc:mo></sc:math>, due to the Lorentz and global SU(N</ad:mi>c</ad:mi></ad:msub></ad:math>) color symmetries in the Landau gauge. Curiously, the perpendicular-type color-magnetic correlation <cd:math xmlns:cd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cd:msub><cd:mi>C</cd:mi><cd:mo>⊥</cd:mo></cd:msub><cd:mo stretchy=\"false\">(</cd:mo><cd:mi>r</cd:mi><cd:mo stretchy=\"false\">)</cd:mo></cd:math> is found to be always negative for arbitrary <gd:math xmlns:gd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gd:mi>r</gd:mi></gd:math>, except for the same-point correlation at <id:math xmlns: display=\"inline\"><id:mi>r</id:mi><id:mo>=</id:mo><id:mn>0</id:mn></id:math>. In contrast, the parallel-type color-magnetic correlation <kd:math xmlns:kd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kd:msub><kd:mi>C</kd:mi><kd:mo stretchy=\"false\">∥</kd:mo></kd:msub><kd:mo stretchy=\"false\">(</kd:mo><kd:mi>r</kd:mi><kd:mo stretchy=\"false\">)</kd:mo></kd:math> is always positive. In the infrared region of <pd:math xmlns:pd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><pd:mi>r</pd:mi><pd:mo>≳</pd:mo><pd:mn>0.4</pd:mn><pd:mtext> </pd:mtext><pd:mtext> </pd:mtext><pd:mi>fm</pd:mi></pd:math>, <rd:math xmlns:rd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rd:msub><rd:mi>C</rd:mi><rd:mo>⊥</rd:mo></rd:msub><rd:mo stretchy=\"false\">(</rd:mo><rd:mi>r</rd:mi><rd:mo stretchy=\"false\">)</rd:mo></rd:math> and <vd:math xmlns:vd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><vd:msub><vd:mi>C</vd:mi><vd:mo stretchy=\"false\">∥</vd:mo></vd:msub><vd:mo stretchy=\"false\">(</vd:mo><vd:mi>r</vd:mi><vd:mo stretchy=\"false\">)</vd:mo></vd:math> strongly cancel each other, which leads to a significant cancelation in the sum of the field-strength correlations as ∑</ae:mo>μ</ae:mi>,</ae:mo>ν</ae:mi></ae:mrow></ae:msub>g</ae:mi>2</ae:mn></ae:msup>⟨</ae:mo>G</ae:mi>μ</ae:mi>ν</ae:mi></ae:mrow>a</ae:mi></ae:msubsup>(</ae:mo>s</ae:mi>)</ae:mo>G</ae:mi>μ</ae:mi>ν</ae:mi></ae:mrow>a</ae:mi></ae:msubsup>(</ae:mo>s</ae:mi>′</ae:mo></ae:msup>)</ae:mo>⟩</ae:mo>∝</ae:mo>C</ae:mi>⊥</ae:mo></ae:msub>(</ae:mo>|</ae:mo>s</ae:mi>−</ae:mo>s</ae:mi>′</ae:mo></ae:msup>|</ae:mo>)</ae:mo>+</ae:mo>C</ae:mi>∥</ae:mo></ae:msub>(</ae:mo>|</ae:mo>s</ae:mi>−</ae:mo>s</ae:mi>′</ae:mo></ae:msup>|</ae:mo>)</ae:mo>≃</ae:mo>0</ae:mn></ae:math>. Finally, we decompose the field-strength correlation into quadratic, cubic, and quartic terms of the gluon field <se:math xmlns:se=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><se:msub><se:mi>A</se:mi><se:mi>μ</se:mi></se:msub></se:math> in the Landau gauge. For the perpendicular-type color-magnetic correlation <ue:math xmlns:ue=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ue:msub><ue:mi>C</ue:mi><ue:mo>⊥</ue:mo></ue:msub><ue:mo stretchy=\"false\">(</ue:mo><ue:mi>r</ue:mi><ue:mo stretchy=\"false\">)</ue:mo></ue:math>, the quadratic term is always negative, which is explained by the Yukawa-type gluon propagator. The quartic term gives a relatively small contribution. In the infrared region, the cubic term is positive and tends to cancel with the quadratic term, resulting in a small value of <ye:math xmlns:ye=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ye:msub><ye:mi>C</ye:mi><ye:mo>⊥</ye:mo></ye:msub><ye:mo stretchy=\"false\">(</ye:mo><ye:mi>r</ye:mi><ye:mo stretchy=\"false\">)</ye:mo></ye:math>.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"40 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Color-magnetic correlations in SU(2) and SU(3) lattice QCD\",\"authors\":\"Atsuya Tokutake, Kei Tohme, Hideo Suganuma\",\"doi\":\"10.1103/1n8n-xlnp\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the two-point field-strength correlation g</a:mi>2</a:mn></a:msup>⟨</a:mo>G</a:mi>μ</a:mi>ν</a:mi></a:mrow>a</a:mi></a:msubsup>(</a:mo>s</a:mi>)</a:mo>G</a:mi>α</a:mi>β</a:mi></a:mrow>b</a:mi></a:msubsup>(</a:mo>s</a:mi>′</a:mo></a:msup>)</a:mo>⟩</a:mo></a:math> in the Landau gauge in SU(2) and SU(3) quenched lattice QCD, as well as the gluon propagator <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msup><i:mi>g</i:mi><i:mn>2</i:mn></i:msup><i:mo stretchy=\\\"false\\\">⟨</i:mo><i:msubsup><i:mi>A</i:mi><i:mi>μ</i:mi><i:mi>a</i:mi></i:msubsup><i:mo stretchy=\\\"false\\\">(</i:mo><i:mi>s</i:mi><i:mo stretchy=\\\"false\\\">)</i:mo><i:msubsup><i:mi>A</i:mi><i:mi>ν</i:mi><i:mi>b</i:mi></i:msubsup><i:mo stretchy=\\\"false\\\">(</i:mo><i:msup><i:mi>s</i:mi><i:mo>′</i:mo></i:msup><i:mo stretchy=\\\"false\\\">)</i:mo><i:mo stretchy=\\\"false\\\">⟩</i:mo></i:math>. The Landau-gauge gluon propagator <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:msup><q:mi>g</q:mi><q:mn>2</q:mn></q:msup><q:mo stretchy=\\\"false\\\">⟨</q:mo><q:msubsup><q:mi>A</q:mi><q:mi>μ</q:mi><q:mi>a</q:mi></q:msubsup><q:mo stretchy=\\\"false\\\">(</q:mo><q:mi>s</q:mi><q:mo stretchy=\\\"false\\\">)</q:mo><q:msubsup><q:mi>A</q:mi><q:mi>μ</q:mi><q:mi>a</q:mi></q:msubsup><q:mo stretchy=\\\"false\\\">(</q:mo><q:msup><q:mi>s</q:mi><q:mo>′</q:mo></q:msup><q:mo stretchy=\\\"false\\\">)</q:mo><q:mo stretchy=\\\"false\\\">⟩</q:mo></q:math> is well described by the Yukawa-type function <y:math xmlns:y=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><y:msup><y:mi>e</y:mi><y:mrow><y:mo>−</y:mo><y:mi>m</y:mi><y:mi>r</y:mi></y:mrow></y:msup><y:mo>/</y:mo><y:mi>r</y:mi></y:math> with r</ab:mi>≡</ab:mo>|</ab:mo>s</ab:mi>−</ab:mo>s</ab:mi>′</ab:mo></ab:msup>|</ab:mo></ab:math> for <eb:math xmlns:eb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><eb:mi>r</eb:mi><eb:mo>=</eb:mo><eb:mn>0.1</eb:mn><eb:mi>–</eb:mi><eb:mn>1.0</eb:mn><eb:mtext> </eb:mtext><eb:mtext> </eb:mtext><eb:mi>fm</eb:mi></eb:math> in both SU(2) and SU(3) QCD. Next, motivated by color-magnetic instabilities in the QCD vacuum, we investigate the perpendicular-type color-magnetic correlation, <gb:math xmlns:gb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gb:mrow><gb:msub><gb:mrow><gb:mi>C</gb:mi></gb:mrow><gb:mrow><gb:mo>⊥</gb:mo></gb:mrow></gb:msub><gb:mo stretchy=\\\"false\\\">(</gb:mo><gb:mi>r</gb:mi><gb:mo stretchy=\\\"false\\\">)</gb:mo><gb:mo>≡</gb:mo><gb:msup><gb:mrow><gb:mi>g</gb:mi></gb:mrow><gb:mrow><gb:mn>2</gb:mn></gb:mrow></gb:msup><gb:mo stretchy=\\\"false\\\">⟨</gb:mo><gb:msubsup><gb:mrow><gb:mi>H</gb:mi></gb:mrow><gb:mrow><gb:mi>z</gb:mi></gb:mrow><gb:mrow><gb:mi>a</gb:mi></gb:mrow></gb:msubsup><gb:mo stretchy=\\\"false\\\">(</gb:mo><gb:mi>s</gb:mi><gb:mo stretchy=\\\"false\\\">)</gb:mo><gb:msubsup><gb:mrow><gb:mi>H</gb:mi></gb:mrow><gb:mrow><gb:mi>z</gb:mi></gb:mrow><gb:mrow><gb:mi>a</gb:mi></gb:mrow></gb:msubsup><gb:mo stretchy=\\\"false\\\">(</gb:mo><gb:mi>s</gb:mi><gb:mo>+</gb:mo><gb:mi>r</gb:mi><gb:mover accent=\\\"true\\\"><gb:mrow><gb:mo>⊥</gb:mo></gb:mrow><gb:mrow><gb:mo stretchy=\\\"false\\\">^</gb:mo></gb:mrow></gb:mover><gb:mo stretchy=\\\"false\\\">)</gb:mo><gb:mo stretchy=\\\"false\\\">)</gb:mo><gb:mo stretchy=\\\"false\\\">⟩</gb:mo></gb:mrow></gb:math> (<tb:math xmlns:tb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><tb:mrow><tb:mover accent=\\\"true\\\"><tb:mrow><tb:mo>⊥</tb:mo></tb:mrow><tb:mrow><tb:mo stretchy=\\\"false\\\">^</tb:mo></tb:mrow></tb:mover></tb:mrow></tb:math>: unit vector on the <xb:math xmlns:xb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><xb:mi>x</xb:mi><xb:mi>y</xb:mi></xb:math> plane), and the parallel-type one, <zb:math xmlns:zb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><zb:mrow><zb:msub><zb:mrow><zb:mi>C</zb:mi></zb:mrow><zb:mrow><zb:mo stretchy=\\\"false\\\">∥</zb:mo></zb:mrow></zb:msub><zb:mo stretchy=\\\"false\\\">(</zb:mo><zb:mi>r</zb:mi><zb:mo stretchy=\\\"false\\\">)</zb:mo><zb:mo>≡</zb:mo><zb:msup><zb:mrow><zb:mi>g</zb:mi></zb:mrow><zb:mrow><zb:mn>2</zb:mn></zb:mrow></zb:msup><zb:mo stretchy=\\\"false\\\">⟨</zb:mo><zb:msubsup><zb:mrow><zb:mi>H</zb:mi></zb:mrow><zb:mrow><zb:mi>z</zb:mi></zb:mrow><zb:mrow><zb:mi>a</zb:mi></zb:mrow></zb:msubsup><zb:mo stretchy=\\\"false\\\">(</zb:mo><zb:mi>s</zb:mi><zb:mo stretchy=\\\"false\\\">)</zb:mo><zb:msubsup><zb:mrow><zb:mi>H</zb:mi></zb:mrow><zb:mrow><zb:mi>z</zb:mi></zb:mrow><zb:mrow><zb:mi>a</zb:mi></zb:mrow></zb:msubsup><zb:mo stretchy=\\\"false\\\">(</zb:mo><zb:mi>s</zb:mi><zb:mo>+</zb:mo><zb:mi>r</zb:mi><zb:mover accent=\\\"true\\\"><zb:mrow><zb:mo stretchy=\\\"false\\\">∥</zb:mo></zb:mrow><zb:mrow><zb:mo>^</zb:mo></zb:mrow></zb:mover><zb:mo stretchy=\\\"false\\\">)</zb:mo><zb:mo stretchy=\\\"false\\\">⟩</zb:mo></zb:mrow></zb:math> (<mc:math xmlns:mc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><mc:mrow><mc:mover accent=\\\"true\\\"><mc:mrow><mc:mo stretchy=\\\"false\\\">∥</mc:mo></mc:mrow><mc:mrow><mc:mo>^</mc:mo></mc:mrow></mc:mover></mc:mrow></mc:math>: unit vector on the <qc:math xmlns:qc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><qc:mi>t</qc:mi><qc:mi>z</qc:mi></qc:math> plane). These two quantities reproduce all the correlation of <sc:math xmlns:sc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><sc:msup><sc:mi>g</sc:mi><sc:mn>2</sc:mn></sc:msup><sc:mo stretchy=\\\"false\\\">⟨</sc:mo><sc:msubsup><sc:mi>G</sc:mi><sc:mrow><sc:mi>μ</sc:mi><sc:mi>ν</sc:mi></sc:mrow><sc:mi>a</sc:mi></sc:msubsup><sc:mo stretchy=\\\"false\\\">(</sc:mo><sc:mi>s</sc:mi><sc:mo stretchy=\\\"false\\\">)</sc:mo><sc:msubsup><sc:mi>G</sc:mi><sc:mrow><sc:mi>α</sc:mi><sc:mi>β</sc:mi></sc:mrow><sc:mi>b</sc:mi></sc:msubsup><sc:mo stretchy=\\\"false\\\">(</sc:mo><sc:msup><sc:mi>s</sc:mi><sc:mo>′</sc:mo></sc:msup><sc:mo stretchy=\\\"false\\\">)</sc:mo><sc:mo stretchy=\\\"false\\\">⟩</sc:mo></sc:math>, due to the Lorentz and global SU(N</ad:mi>c</ad:mi></ad:msub></ad:math>) color symmetries in the Landau gauge. Curiously, the perpendicular-type color-magnetic correlation <cd:math xmlns:cd=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><cd:msub><cd:mi>C</cd:mi><cd:mo>⊥</cd:mo></cd:msub><cd:mo stretchy=\\\"false\\\">(</cd:mo><cd:mi>r</cd:mi><cd:mo stretchy=\\\"false\\\">)</cd:mo></cd:math> is found to be always negative for arbitrary <gd:math xmlns:gd=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gd:mi>r</gd:mi></gd:math>, except for the same-point correlation at <id:math xmlns: display=\\\"inline\\\"><id:mi>r</id:mi><id:mo>=</id:mo><id:mn>0</id:mn></id:math>. In contrast, the parallel-type color-magnetic correlation <kd:math xmlns:kd=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><kd:msub><kd:mi>C</kd:mi><kd:mo stretchy=\\\"false\\\">∥</kd:mo></kd:msub><kd:mo stretchy=\\\"false\\\">(</kd:mo><kd:mi>r</kd:mi><kd:mo stretchy=\\\"false\\\">)</kd:mo></kd:math> is always positive. In the infrared region of <pd:math xmlns:pd=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><pd:mi>r</pd:mi><pd:mo>≳</pd:mo><pd:mn>0.4</pd:mn><pd:mtext> </pd:mtext><pd:mtext> </pd:mtext><pd:mi>fm</pd:mi></pd:math>, <rd:math xmlns:rd=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><rd:msub><rd:mi>C</rd:mi><rd:mo>⊥</rd:mo></rd:msub><rd:mo stretchy=\\\"false\\\">(</rd:mo><rd:mi>r</rd:mi><rd:mo stretchy=\\\"false\\\">)</rd:mo></rd:math> and <vd:math xmlns:vd=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><vd:msub><vd:mi>C</vd:mi><vd:mo stretchy=\\\"false\\\">∥</vd:mo></vd:msub><vd:mo stretchy=\\\"false\\\">(</vd:mo><vd:mi>r</vd:mi><vd:mo stretchy=\\\"false\\\">)</vd:mo></vd:math> strongly cancel each other, which leads to a significant cancelation in the sum of the field-strength correlations as ∑</ae:mo>μ</ae:mi>,</ae:mo>ν</ae:mi></ae:mrow></ae:msub>g</ae:mi>2</ae:mn></ae:msup>⟨</ae:mo>G</ae:mi>μ</ae:mi>ν</ae:mi></ae:mrow>a</ae:mi></ae:msubsup>(</ae:mo>s</ae:mi>)</ae:mo>G</ae:mi>μ</ae:mi>ν</ae:mi></ae:mrow>a</ae:mi></ae:msubsup>(</ae:mo>s</ae:mi>′</ae:mo></ae:msup>)</ae:mo>⟩</ae:mo>∝</ae:mo>C</ae:mi>⊥</ae:mo></ae:msub>(</ae:mo>|</ae:mo>s</ae:mi>−</ae:mo>s</ae:mi>′</ae:mo></ae:msup>|</ae:mo>)</ae:mo>+</ae:mo>C</ae:mi>∥</ae:mo></ae:msub>(</ae:mo>|</ae:mo>s</ae:mi>−</ae:mo>s</ae:mi>′</ae:mo></ae:msup>|</ae:mo>)</ae:mo>≃</ae:mo>0</ae:mn></ae:math>. Finally, we decompose the field-strength correlation into quadratic, cubic, and quartic terms of the gluon field <se:math xmlns:se=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><se:msub><se:mi>A</se:mi><se:mi>μ</se:mi></se:msub></se:math> in the Landau gauge. For the perpendicular-type color-magnetic correlation <ue:math xmlns:ue=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ue:msub><ue:mi>C</ue:mi><ue:mo>⊥</ue:mo></ue:msub><ue:mo stretchy=\\\"false\\\">(</ue:mo><ue:mi>r</ue:mi><ue:mo stretchy=\\\"false\\\">)</ue:mo></ue:math>, the quadratic term is always negative, which is explained by the Yukawa-type gluon propagator. The quartic term gives a relatively small contribution. In the infrared region, the cubic term is positive and tends to cancel with the quadratic term, resulting in a small value of <ye:math xmlns:ye=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ye:msub><ye:mi>C</ye:mi><ye:mo>⊥</ye:mo></ye:msub><ye:mo stretchy=\\\"false\\\">(</ye:mo><ye:mi>r</ye:mi><ye:mo stretchy=\\\"false\\\">)</ye:mo></ye:math>.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/1n8n-xlnp\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/1n8n-xlnp","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了SU(2)和SU(3)淬灭晶格QCD中的朗道规范中的两点场强相关g2⟨Gμνa(s)Gαβb(s ‘)⟩,以及胶子传播子g2⟨Aμa(s)Aνb(s ’)⟩。朗道规胶子传播子g2⟨Aμa(s)Aμa(s ‘)⟩在SU(2)和SU(3) QCD中都被yukawa型函数e - mr/r≡|s - s ’ |很好地描述为r= 0.1-1.0 fm。接下来,由QCD真空中的色磁不稳定性驱动,我们研究垂直型色磁相关,C⊥(r)≡g2⟨Hza(s)Hza(s+r⊥^)⟩(⊥^:xy平面上的单位向量),以及平行型的C∥(r)≡g2⟨Hza(s)Hza(s+r∥^)⟩(∥^:tz平面上的单位向量)。这两个量再现了g2⟨Gμνa(s)Gαβb(s ')⟩的所有相关性,这是由于朗道规范中的洛伦兹和全局SU(Nc)颜色对称性。奇怪的是,除了在r=0处的同点相关外,垂直型色磁相关⊥(r)在任意r处都是负的。而平行型色磁相关C∥(r)则始终为正。在r≥0.4 fm的红外区域,C⊥(r)和C∥(r)强烈地相互抵消,这导致场强相关之和显著地抵消,如∑μ,νg2⟨Gμνa(s)Gμνa(s’)⟩∝C⊥(|s−s’|)+C∥(|s−s’|)≃0。最后,我们将朗道规范中胶子场μ的场强相关性分解为二次项、三次项和四次项。对于垂直型色磁相关⊥(r),其二次项总是负的,这可以用yukawa型胶子传播子来解释。四次项的贡献相对较小。在红外区域,三次项是正的,并且倾向于与二次项抵消,从而得到一个很小的C⊥(r)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color-magnetic correlations in SU(2) and SU(3) lattice QCD
We study the two-point field-strength correlation g2⟨Gμνa(s)Gαβb(s′)⟩ in the Landau gauge in SU(2) and SU(3) quenched lattice QCD, as well as the gluon propagator g2Aμa(s)Aνb(s). The Landau-gauge gluon propagator g2Aμa(s)Aμa(s) is well described by the Yukawa-type function emr/r with r≡|s−s′| for r=0.11.0 fm in both SU(2) and SU(3) QCD. Next, motivated by color-magnetic instabilities in the QCD vacuum, we investigate the perpendicular-type color-magnetic correlation, C(r)g2Hza(s)Hza(s+r^)) (^: unit vector on the xy plane), and the parallel-type one, C(r)g2Hza(s)Hza(s+r^) (^: unit vector on the tz plane). These two quantities reproduce all the correlation of g2Gμνa(s)Gαβb(s), due to the Lorentz and global SU(Nc) color symmetries in the Landau gauge. Curiously, the perpendicular-type color-magnetic correlation C(r) is found to be always negative for arbitrary r, except for the same-point correlation at r=0. In contrast, the parallel-type color-magnetic correlation C(r) is always positive. In the infrared region of r0.4 fm, C(r) and C(r) strongly cancel each other, which leads to a significant cancelation in the sum of the field-strength correlations as ∑μ,νg2⟨Gμνa(s)Gμνa(s′)⟩∝C⊥(|s−s′|)+C∥(|s−s′|)≃0. Finally, we decompose the field-strength correlation into quadratic, cubic, and quartic terms of the gluon field Aμ in the Landau gauge. For the perpendicular-type color-magnetic correlation C(r), the quadratic term is always negative, which is explained by the Yukawa-type gluon propagator. The quartic term gives a relatively small contribution. In the infrared region, the cubic term is positive and tends to cancel with the quadratic term, resulting in a small value of C(r).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信