{"title":"由轻夸克和它们与重子的混合物组成的五夸克","authors":"Nicholas Miesch, Edward Shuryak, Ismail Zahed","doi":"10.1103/vdp9-mmbj","DOIUrl":null,"url":null,"abstract":"This paper is a continuation of our studies of multiquark hadrons. The antisymmetrization of their wave functions required by Fermi statistics is nontrivial, as it mixes orbital, color, spin, and flavor structures. In our previous papers we developed a method to find them based on the representations of the permutation group, and derived the explicit wave functions for baryons excited to the first and second shells (L</a:mi>=</a:mo>1</a:mn></a:mrow></a:math>, 2), tetraquarks <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>q</c:mi><c:mi>q</c:mi><c:mover accent=\"true\"><c:mi>q</c:mi><c:mo stretchy=\"false\">¯</c:mo></c:mover><c:mover accent=\"true\"><c:mi>q</c:mi><c:mo stretchy=\"false\">¯</c:mo></c:mover></c:math> and hexaquarks (<i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mn>6</i:mn><i:mi>q</i:mi></i:math>). Now we apply it to light pentaquarks (<k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>q</k:mi><k:mi>q</k:mi><k:mi>q</k:mi><k:mi>q</k:mi><k:mover accent=\"true\"><k:mi>q</k:mi><k:mo stretchy=\"false\">¯</k:mo></k:mover></k:math>), in the S- and P-shells (<o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>L</o:mi><o:mo>=</o:mo><o:mn>0</o:mn></o:math>, 1). Using Jacobi coordinates, one can use the hyperdistance approximation in 12-dimensional space. We further address the issue of “unquenching” of baryons, by considering their mixing with pentaquarks, via two channels, through the addition of <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>σ</q:mi></q:math>-like or <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>π</s:mi></s:math>-like <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mover accent=\"true\"><u:mi>q</u:mi><u:mo stretchy=\"false\">¯</u:mo></u:mover><u:mi>q</u:mi></u:math> pairs. This mixing is central for understanding of the observed flavor asymmetry of the antiquark sea, the amount of orbital motion issue as well as other nucleon properties.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"15 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pentaquarks made of light quarks and their admixture to baryons\",\"authors\":\"Nicholas Miesch, Edward Shuryak, Ismail Zahed\",\"doi\":\"10.1103/vdp9-mmbj\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is a continuation of our studies of multiquark hadrons. The antisymmetrization of their wave functions required by Fermi statistics is nontrivial, as it mixes orbital, color, spin, and flavor structures. In our previous papers we developed a method to find them based on the representations of the permutation group, and derived the explicit wave functions for baryons excited to the first and second shells (L</a:mi>=</a:mo>1</a:mn></a:mrow></a:math>, 2), tetraquarks <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mi>q</c:mi><c:mi>q</c:mi><c:mover accent=\\\"true\\\"><c:mi>q</c:mi><c:mo stretchy=\\\"false\\\">¯</c:mo></c:mover><c:mover accent=\\\"true\\\"><c:mi>q</c:mi><c:mo stretchy=\\\"false\\\">¯</c:mo></c:mover></c:math> and hexaquarks (<i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mn>6</i:mn><i:mi>q</i:mi></i:math>). Now we apply it to light pentaquarks (<k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>q</k:mi><k:mi>q</k:mi><k:mi>q</k:mi><k:mi>q</k:mi><k:mover accent=\\\"true\\\"><k:mi>q</k:mi><k:mo stretchy=\\\"false\\\">¯</k:mo></k:mover></k:math>), in the S- and P-shells (<o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:mi>L</o:mi><o:mo>=</o:mo><o:mn>0</o:mn></o:math>, 1). Using Jacobi coordinates, one can use the hyperdistance approximation in 12-dimensional space. We further address the issue of “unquenching” of baryons, by considering their mixing with pentaquarks, via two channels, through the addition of <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:mi>σ</q:mi></q:math>-like or <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:mi>π</s:mi></s:math>-like <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mover accent=\\\"true\\\"><u:mi>q</u:mi><u:mo stretchy=\\\"false\\\">¯</u:mo></u:mover><u:mi>q</u:mi></u:math> pairs. This mixing is central for understanding of the observed flavor asymmetry of the antiquark sea, the amount of orbital motion issue as well as other nucleon properties.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/vdp9-mmbj\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/vdp9-mmbj","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Pentaquarks made of light quarks and their admixture to baryons
This paper is a continuation of our studies of multiquark hadrons. The antisymmetrization of their wave functions required by Fermi statistics is nontrivial, as it mixes orbital, color, spin, and flavor structures. In our previous papers we developed a method to find them based on the representations of the permutation group, and derived the explicit wave functions for baryons excited to the first and second shells (L=1, 2), tetraquarks qqq¯q¯ and hexaquarks (6q). Now we apply it to light pentaquarks (qqqqq¯), in the S- and P-shells (L=0, 1). Using Jacobi coordinates, one can use the hyperdistance approximation in 12-dimensional space. We further address the issue of “unquenching” of baryons, by considering their mixing with pentaquarks, via two channels, through the addition of σ-like or π-like q¯q pairs. This mixing is central for understanding of the observed flavor asymmetry of the antiquark sea, the amount of orbital motion issue as well as other nucleon properties.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.