基于自适应球面目标估计的动基视距跟踪系统反馈线性化控制。

IF 6.5
Bohan Wu, Haobo Jia, Songlin Chen, Yang Liu, Wangpeng Song
{"title":"基于自适应球面目标估计的动基视距跟踪系统反馈线性化控制。","authors":"Bohan Wu, Haobo Jia, Songlin Chen, Yang Liu, Wangpeng Song","doi":"10.1016/j.isatra.2025.09.024","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the maneuvering target tracking problem for moving-base line-of-sight (LOS) tracking systems under conditions of unknown observation noise. First, we establish a comprehensive system model that simultaneously considers the LOS pointing model and the gimbal dynamics model in the LOS tracking system. Then, an advanced tracking error feedback control system based on feedback linearization principles is designed, effectively transforming target maneuvers and unmatched base disturbances into matched disturbances that are directly compensated through a disturbance observer, achieving superior control performance compared to a traditional gyroscope-feedback-based system. Furthermore, the time derivative of tracking error obtained by conventional command estimation methods is vulnerable to the deleterious impact of base motion. To overcome this limitation, we propose a spherical target estimation (STE) approach, which estimates the target's motion on a spherical surface in the world frame. This eliminates the coupling effect of base motion in the time derivative of tracking error and does not require target distance or gimbal attitude sensors. In addition, to tackle the changes in the properties of measurement noise caused by target detection and camera characteristics, a variational Bayesian Kalman adaptive filter (VB-AKF) is introduced. This method effectively reduces target motion estimation errors caused by measurement noise variance mismatch, thereby enhancing tracking performance. Simulation results in the Webots robotic simulator demonstrate the superior performance of the proposed methods.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feedback linearizing control for moving-base line-of-sight tracking systems via adaptive spherical target estimation.\",\"authors\":\"Bohan Wu, Haobo Jia, Songlin Chen, Yang Liu, Wangpeng Song\",\"doi\":\"10.1016/j.isatra.2025.09.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper investigates the maneuvering target tracking problem for moving-base line-of-sight (LOS) tracking systems under conditions of unknown observation noise. First, we establish a comprehensive system model that simultaneously considers the LOS pointing model and the gimbal dynamics model in the LOS tracking system. Then, an advanced tracking error feedback control system based on feedback linearization principles is designed, effectively transforming target maneuvers and unmatched base disturbances into matched disturbances that are directly compensated through a disturbance observer, achieving superior control performance compared to a traditional gyroscope-feedback-based system. Furthermore, the time derivative of tracking error obtained by conventional command estimation methods is vulnerable to the deleterious impact of base motion. To overcome this limitation, we propose a spherical target estimation (STE) approach, which estimates the target's motion on a spherical surface in the world frame. This eliminates the coupling effect of base motion in the time derivative of tracking error and does not require target distance or gimbal attitude sensors. In addition, to tackle the changes in the properties of measurement noise caused by target detection and camera characteristics, a variational Bayesian Kalman adaptive filter (VB-AKF) is introduced. This method effectively reduces target motion estimation errors caused by measurement noise variance mismatch, thereby enhancing tracking performance. Simulation results in the Webots robotic simulator demonstrate the superior performance of the proposed methods.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2025.09.024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.09.024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了未知观测噪声条件下的动基视距跟踪系统的机动目标跟踪问题。首先,建立了同时考虑LOS指向模型和框架动力学模型的LOS跟踪系统综合模型;然后,设计了一种基于反馈线性化原理的先进跟踪误差反馈控制系统,有效地将目标机动和不匹配的基扰动转化为匹配的扰动,并通过扰动观测器直接补偿,实现了优于传统陀螺仪反馈系统的控制性能。此外,传统的指令估计方法得到的跟踪误差的时间导数容易受到基运动的有害影响。为了克服这一限制,我们提出了一种球面目标估计(STE)方法,该方法在世界框架中估计目标在球面上的运动。这消除了跟踪误差时间导数中基运动的耦合效应,并且不需要目标距离或框架姿态传感器。此外,为了解决目标检测和相机特性引起的测量噪声特性变化,引入了变分贝叶斯卡尔曼自适应滤波器(VB-AKF)。该方法有效降低了由于测量噪声方差失配引起的目标运动估计误差,从而提高了跟踪性能。在Webots机器人模拟器上的仿真结果证明了所提方法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feedback linearizing control for moving-base line-of-sight tracking systems via adaptive spherical target estimation.

This paper investigates the maneuvering target tracking problem for moving-base line-of-sight (LOS) tracking systems under conditions of unknown observation noise. First, we establish a comprehensive system model that simultaneously considers the LOS pointing model and the gimbal dynamics model in the LOS tracking system. Then, an advanced tracking error feedback control system based on feedback linearization principles is designed, effectively transforming target maneuvers and unmatched base disturbances into matched disturbances that are directly compensated through a disturbance observer, achieving superior control performance compared to a traditional gyroscope-feedback-based system. Furthermore, the time derivative of tracking error obtained by conventional command estimation methods is vulnerable to the deleterious impact of base motion. To overcome this limitation, we propose a spherical target estimation (STE) approach, which estimates the target's motion on a spherical surface in the world frame. This eliminates the coupling effect of base motion in the time derivative of tracking error and does not require target distance or gimbal attitude sensors. In addition, to tackle the changes in the properties of measurement noise caused by target detection and camera characteristics, a variational Bayesian Kalman adaptive filter (VB-AKF) is introduced. This method effectively reduces target motion estimation errors caused by measurement noise variance mismatch, thereby enhancing tracking performance. Simulation results in the Webots robotic simulator demonstrate the superior performance of the proposed methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信