MRI上多发性硬化症病变、顺磁边缘和中央静脉征象的自动分割提供了可靠的诊断生物标志物。

Imaging neuroscience (Cambridge, Mass.) Pub Date : 2025-10-10 eCollection Date: 2025-01-01 DOI:10.1162/IMAG.a.932
Fengling Hu, Zheng Ren, Luyun Chen, Alessandra M Valcarcel, Jordan Dworkin, Brian Renner, Lynn Daboul, Carly M O'Donnell, Elizabeth D Verter, Abigail R Manning, Kelly A Clark, Eunchan Bae, Christina Chen, Carolyn Lou, Theodore D Satterthwaite, Haochang Shou, Michel Bilello, Kunio Nakamura, Amit Bar-Or, Peter A Calabresi, Leorah Freeman, Roland G Henry, Erin E Longbrake, Jiwon Oh, Matthew K Schindler, Martina Absinta, Andrew J Solomon, Nancy L Sicotte, Daniel Ontaneda, Daniel S Reich, Pascal Sati, Russell T Shinohara
{"title":"MRI上多发性硬化症病变、顺磁边缘和中央静脉征象的自动分割提供了可靠的诊断生物标志物。","authors":"Fengling Hu, Zheng Ren, Luyun Chen, Alessandra M Valcarcel, Jordan Dworkin, Brian Renner, Lynn Daboul, Carly M O'Donnell, Elizabeth D Verter, Abigail R Manning, Kelly A Clark, Eunchan Bae, Christina Chen, Carolyn Lou, Theodore D Satterthwaite, Haochang Shou, Michel Bilello, Kunio Nakamura, Amit Bar-Or, Peter A Calabresi, Leorah Freeman, Roland G Henry, Erin E Longbrake, Jiwon Oh, Matthew K Schindler, Martina Absinta, Andrew J Solomon, Nancy L Sicotte, Daniel Ontaneda, Daniel S Reich, Pascal Sati, Russell T Shinohara","doi":"10.1162/IMAG.a.932","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is characterized by central nervous system lesions detectable via MRI. Existing diagnostic criteria incorporate presence of white matter lesions, but specificity can be improved using MS-specific imaging biomarkers, including paramagnetic rim lesions (PRLs) and central vein sign (CVS). However, manual segmentation of lesions, PRLs, and CVS is time-consuming and subjective. We propose a fully-automated joint segmentation method called Automated Lesion, PRL, and CVS Analysis (ALPaCA). We trained ALPaCA using subject-level cross-validation on 47 adults with MS and 50 adults with radiological MS mimics. ALPaCA uses a voxel-wise lesion segmentation method to propose a large set of lesion candidates. Lesion candidates are input into a multi-contrast, multi-label 3D convolutional neural network as 3D patches to produce lesion, PRL, and CVS predictions. When multiple lesions exist within a patch, an attention mechanism identifies which lesion candidate to classify. At the lesion level, ALPaCA achieves cross-validation areas under the receiver operating characteristic curve (AUROCs) of 0.95, 0.91, and 0.87 for lesion, PRL, and CVS classification, outperforming previous methods (all p < 0.001). Correlations between subject-level ALPaCA lesion and PRL scores with manual counts are higher than those of previous methods (p < 0.001; p = 0.03). Subject-level ALPaCA PRL and CVS scores are highly associated with MS in logistic regressions, when controlling for age and sex (p < 0.001). ALPaCA allows for fully-automated simultaneous segmentation of MS lesions, PRLs, and CVS using clinically-feasible scans. These segmentations outperform existing methods at the lesion and subject level.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12516162/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated segmentation of multiple sclerosis lesions, paramagnetic rims, and central vein sign on MRI provides reliable diagnostic biomarkers.\",\"authors\":\"Fengling Hu, Zheng Ren, Luyun Chen, Alessandra M Valcarcel, Jordan Dworkin, Brian Renner, Lynn Daboul, Carly M O'Donnell, Elizabeth D Verter, Abigail R Manning, Kelly A Clark, Eunchan Bae, Christina Chen, Carolyn Lou, Theodore D Satterthwaite, Haochang Shou, Michel Bilello, Kunio Nakamura, Amit Bar-Or, Peter A Calabresi, Leorah Freeman, Roland G Henry, Erin E Longbrake, Jiwon Oh, Matthew K Schindler, Martina Absinta, Andrew J Solomon, Nancy L Sicotte, Daniel Ontaneda, Daniel S Reich, Pascal Sati, Russell T Shinohara\",\"doi\":\"10.1162/IMAG.a.932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple sclerosis (MS) is characterized by central nervous system lesions detectable via MRI. Existing diagnostic criteria incorporate presence of white matter lesions, but specificity can be improved using MS-specific imaging biomarkers, including paramagnetic rim lesions (PRLs) and central vein sign (CVS). However, manual segmentation of lesions, PRLs, and CVS is time-consuming and subjective. We propose a fully-automated joint segmentation method called Automated Lesion, PRL, and CVS Analysis (ALPaCA). We trained ALPaCA using subject-level cross-validation on 47 adults with MS and 50 adults with radiological MS mimics. ALPaCA uses a voxel-wise lesion segmentation method to propose a large set of lesion candidates. Lesion candidates are input into a multi-contrast, multi-label 3D convolutional neural network as 3D patches to produce lesion, PRL, and CVS predictions. When multiple lesions exist within a patch, an attention mechanism identifies which lesion candidate to classify. At the lesion level, ALPaCA achieves cross-validation areas under the receiver operating characteristic curve (AUROCs) of 0.95, 0.91, and 0.87 for lesion, PRL, and CVS classification, outperforming previous methods (all p < 0.001). Correlations between subject-level ALPaCA lesion and PRL scores with manual counts are higher than those of previous methods (p < 0.001; p = 0.03). Subject-level ALPaCA PRL and CVS scores are highly associated with MS in logistic regressions, when controlling for age and sex (p < 0.001). ALPaCA allows for fully-automated simultaneous segmentation of MS lesions, PRLs, and CVS using clinically-feasible scans. These segmentations outperform existing methods at the lesion and subject level.</p>\",\"PeriodicalId\":73341,\"journal\":{\"name\":\"Imaging neuroscience (Cambridge, Mass.)\",\"volume\":\"3 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12516162/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Imaging neuroscience (Cambridge, Mass.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/IMAG.a.932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/IMAG.a.932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多发性硬化症(MS)的特点是通过MRI检测到中枢神经系统病变。现有的诊断标准包括白质病变的存在,但特异性可以通过ms特异性成像生物标志物来提高,包括顺磁边缘病变(prl)和中央静脉征象(CVS)。然而,手动分割病变、prl和CVS是费时且主观的。我们提出了一种全自动关节分割方法,称为自动病变,PRL和CVS分析(ALPaCA)。我们对47名成年多发性硬化症患者和50名成年放射性多发性硬化症患者进行了受试者水平的交叉验证训练。ALPaCA使用基于体素的病灶分割方法来提出大量的病灶候选集。病变候选物被输入到一个多对比度、多标签的3D卷积神经网络中,作为3D补丁产生病变、PRL和CVS预测。当一个斑块内存在多个病灶时,注意机制会识别出该对哪个病灶进行分类。在病变水平上,ALPaCA在病变、PRL和CVS分类的受试者工作特征曲线(auroc)下实现了0.95、0.91和0.87的交叉验证区域,优于以往的方法(均p < 0.001)。人工计数的受试者水平ALPaCA病变与PRL评分的相关性高于以往方法(p < 0.001; p = 0.03)。在控制年龄和性别的情况下,受试者水平的ALPaCA PRL和CVS评分在逻辑回归中与MS高度相关(p < 0.001)。ALPaCA允许使用临床可行的扫描对MS病变、prl和CVS进行全自动同时分割。这些分割优于现有的方法在病变和主题水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated segmentation of multiple sclerosis lesions, paramagnetic rims, and central vein sign on MRI provides reliable diagnostic biomarkers.

Multiple sclerosis (MS) is characterized by central nervous system lesions detectable via MRI. Existing diagnostic criteria incorporate presence of white matter lesions, but specificity can be improved using MS-specific imaging biomarkers, including paramagnetic rim lesions (PRLs) and central vein sign (CVS). However, manual segmentation of lesions, PRLs, and CVS is time-consuming and subjective. We propose a fully-automated joint segmentation method called Automated Lesion, PRL, and CVS Analysis (ALPaCA). We trained ALPaCA using subject-level cross-validation on 47 adults with MS and 50 adults with radiological MS mimics. ALPaCA uses a voxel-wise lesion segmentation method to propose a large set of lesion candidates. Lesion candidates are input into a multi-contrast, multi-label 3D convolutional neural network as 3D patches to produce lesion, PRL, and CVS predictions. When multiple lesions exist within a patch, an attention mechanism identifies which lesion candidate to classify. At the lesion level, ALPaCA achieves cross-validation areas under the receiver operating characteristic curve (AUROCs) of 0.95, 0.91, and 0.87 for lesion, PRL, and CVS classification, outperforming previous methods (all p < 0.001). Correlations between subject-level ALPaCA lesion and PRL scores with manual counts are higher than those of previous methods (p < 0.001; p = 0.03). Subject-level ALPaCA PRL and CVS scores are highly associated with MS in logistic regressions, when controlling for age and sex (p < 0.001). ALPaCA allows for fully-automated simultaneous segmentation of MS lesions, PRLs, and CVS using clinically-feasible scans. These segmentations outperform existing methods at the lesion and subject level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信