{"title":"基于频谱CT的可解释机器学习模型在可切除非小细胞肺癌中PD-L1表达的鉴定","authors":"Henan Lou, Shiyu Cui, Yinying Dong, Shunli Liu, Shaoke Li, Hongzheng Song, Xiaodan Zhao","doi":"10.2174/0115734056404160250925115913","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study aimed to explore the value of a machine learning model based on spectral computed tomography (CT) for predicting the programmed death ligand-1 (PD-L1) expression in resectable non-small cell lung cancer (NSCLC).</p><p><strong>Methods: </strong>In this retrospective study, 131 instances of NSCLC who underwent preoperative spectral CT scanning were enrolled and divided into a training cohort (n = 92) and a test cohort (n = 39). Clinical-imaging features and quantitative parameters of spectral CT were analyzed. Variable selection was performed using univariate and multivariate logistic regression, as well as LASSO regression. We used eight machine learning algorithms to construct a PD-L1 expression predictive model. We utilized sensitivity, specificity, accuracy, calibration curve, the area under the curve (AUC), F1 score and decision curve analysis (DCA) to evaluate the predictive value of the model.</p><p><strong>Results: </strong>After variable selection, cavitation, ground-glass opacity, and CT40keV and CT70keV at venous phase were selected to develop eight machine learning models. In the test cohort, the extreme gradient boosting (XGBoost) model achieved the best diagnostic performance (AUC = 0.887, sensitivity = 0.696, specificity = 0.937, accuracy = 0.795 and F1 score = 0.800). The DCA indicated favorable clinical utility, and the calibration curve demonstrated the model's high level of prediction accuracy.</p><p><strong>Discussion: </strong>Our study indicated that the machine learning model based on spectral CT could effectively evaluate the PD-L1 expression in resectable NSCLC.</p><p><strong>Conclusion: </strong>The XGBoost model, integrating spectral CT quantitative parameters and imaging features, demonstrated considerable potential in predicting PDL1 expression.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of PD-L1 Expression in Resectable NSCLC using Interpretable Machine Learning Model Based on Spectral CT.\",\"authors\":\"Henan Lou, Shiyu Cui, Yinying Dong, Shunli Liu, Shaoke Li, Hongzheng Song, Xiaodan Zhao\",\"doi\":\"10.2174/0115734056404160250925115913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>This study aimed to explore the value of a machine learning model based on spectral computed tomography (CT) for predicting the programmed death ligand-1 (PD-L1) expression in resectable non-small cell lung cancer (NSCLC).</p><p><strong>Methods: </strong>In this retrospective study, 131 instances of NSCLC who underwent preoperative spectral CT scanning were enrolled and divided into a training cohort (n = 92) and a test cohort (n = 39). Clinical-imaging features and quantitative parameters of spectral CT were analyzed. Variable selection was performed using univariate and multivariate logistic regression, as well as LASSO regression. We used eight machine learning algorithms to construct a PD-L1 expression predictive model. We utilized sensitivity, specificity, accuracy, calibration curve, the area under the curve (AUC), F1 score and decision curve analysis (DCA) to evaluate the predictive value of the model.</p><p><strong>Results: </strong>After variable selection, cavitation, ground-glass opacity, and CT40keV and CT70keV at venous phase were selected to develop eight machine learning models. In the test cohort, the extreme gradient boosting (XGBoost) model achieved the best diagnostic performance (AUC = 0.887, sensitivity = 0.696, specificity = 0.937, accuracy = 0.795 and F1 score = 0.800). The DCA indicated favorable clinical utility, and the calibration curve demonstrated the model's high level of prediction accuracy.</p><p><strong>Discussion: </strong>Our study indicated that the machine learning model based on spectral CT could effectively evaluate the PD-L1 expression in resectable NSCLC.</p><p><strong>Conclusion: </strong>The XGBoost model, integrating spectral CT quantitative parameters and imaging features, demonstrated considerable potential in predicting PDL1 expression.</p>\",\"PeriodicalId\":54215,\"journal\":{\"name\":\"Current Medical Imaging Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Medical Imaging Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734056404160250925115913\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056404160250925115913","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Identification of PD-L1 Expression in Resectable NSCLC using Interpretable Machine Learning Model Based on Spectral CT.
Introduction: This study aimed to explore the value of a machine learning model based on spectral computed tomography (CT) for predicting the programmed death ligand-1 (PD-L1) expression in resectable non-small cell lung cancer (NSCLC).
Methods: In this retrospective study, 131 instances of NSCLC who underwent preoperative spectral CT scanning were enrolled and divided into a training cohort (n = 92) and a test cohort (n = 39). Clinical-imaging features and quantitative parameters of spectral CT were analyzed. Variable selection was performed using univariate and multivariate logistic regression, as well as LASSO regression. We used eight machine learning algorithms to construct a PD-L1 expression predictive model. We utilized sensitivity, specificity, accuracy, calibration curve, the area under the curve (AUC), F1 score and decision curve analysis (DCA) to evaluate the predictive value of the model.
Results: After variable selection, cavitation, ground-glass opacity, and CT40keV and CT70keV at venous phase were selected to develop eight machine learning models. In the test cohort, the extreme gradient boosting (XGBoost) model achieved the best diagnostic performance (AUC = 0.887, sensitivity = 0.696, specificity = 0.937, accuracy = 0.795 and F1 score = 0.800). The DCA indicated favorable clinical utility, and the calibration curve demonstrated the model's high level of prediction accuracy.
Discussion: Our study indicated that the machine learning model based on spectral CT could effectively evaluate the PD-L1 expression in resectable NSCLC.
Conclusion: The XGBoost model, integrating spectral CT quantitative parameters and imaging features, demonstrated considerable potential in predicting PDL1 expression.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.